

Ogden City Francom Public Safety Center HVAC Upgrades

VBFA PROJECT 240262

October 21, 2024

PREPARED BY:

181 EAST 5600 SOUTH
SALT LAKE CITY, UT 84107
PHONE: (801) 530-3148
FAX: (801) 530-3150

SPECIFICATION INDEX

230100	Mechanical Requirements
230500	Common Work Results for HVAC
230518	Escutcheons for HVAC Piping
230529	Hangers and Supports for HVAC Piping and Equipment
230548	Vibration and Seismic Controls for HVAC
230550	Operations and Maintenance of HVAC Systems
230553	Identification for HVAC Piping and Equipment
230593	Testing Adjusting and Balancing for HVAC
232300	Refrigerant Piping
232600	Condensate Drain Piping
235758	Variable Refrigerant Flow (VRF)

SECTION 23 0100 - MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 GENERAL CONDITIONS

- A. The General Conditions of the Contract, with the amendments, supplements, forms and requirements in Division 1, and herewith made a part of this Division.
- B. All sections of Division 21, 22, & 23 shall comply with the Mechanical General Requirements. The standards established in this section as to quality of materials and equipment, the type and quality of workmanship, mode of operations, safety rules, code requirements, etc., shall apply to all sections of this Division as though they were repeated in each Division.
- C. Mechanical equipment that is pre-purchased if any will be assigned to the Mechanical Contractor. By assignment to the Mechanical Contractor, the Mechanical Contractor shall accept and installed the equipment and provide all warranties and guarantees as if the Mechanical Contractor had purchased the equipment.
- D. Construction Indoor-Air Quality Management
 - 1. Comply with SMACNA's "SMACNA IAQ Guideline for Occupied Buildings under Construction."
 - a. If Owner authorizes use of permanent heating, cooling, and ventilating systems during construction period as specified in Division 01 Section "Temporary Facilities and Controls," install filter media having a MERV 8 according to ASHRAE 52.2 at each return-air inlet for the air-handling system used during construction.
 - b. Replace all air filters immediately prior to occupancy.

1.2 SCOPE OF WORK

- A. The project described herein is the **Ogden City – Francom Public Safety Center - HVAC Upgrades**. This work shall include all labor, materials, equipment, fixtures, and devices for the entire mechanical work and a complete operating and tested installation as required for this project.
- B. This Division will schedule the boiler inspection and pay for all costs associated with certifying the boiler with the state.

1.3 CODES & ORDINANCES

- A. All work shall be executed in accordance with all underwriters, public utilities, local and state rules and regulations applicable to the trade affected. Should any change in the plans and Specifications be required to comply with these regulations, the Contractor shall notify the Architect before the time of submitting his bid. After entering into contract, the Contractor will be held to complete all work necessary to meet these requirements without extra expense to the Owner. Where work required by drawings or specifications is above the standard required, it shall be done as shown or specified.

B. Applicable codes:

1. Utah Boiler and Pressure Vessel Rules and Regulations-2019 Edition
2. International Building code- 2021 Edition
3. International Mechanical Code- 2021 Edition
4. International Plumbing Code- 2021 Edition
5. International Fire Code- 2021 Edition
6. International Energy Code- 2021 Edition
7. International Fuel Gas Code- 2021 Edition
8. National Electrical Code- 2017 Edition

1.4 INDUSTRY STANDARDS

A. All work shall comply with the following standards.

1. Associated Air Balance council (AABC)
2. Air Conditioning and Refrigeration Institute (ARI)
3. Air Diffusion council (ADC)
4. Air Movement and Control Association (AMCA)
5. American Gas Association (AGA)
6. American National Standards Institute (ANSI)
7. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE)
8. American Society of Mechanical Engineers (ASME)
9. American Society of Testing Materials (ASTM)
10. American Water Works Association (AWWA)
11. Cooling Tower Institute (CTI)
12. ETL Testing Laboratories (ETL)
13. Institute of Electrical and Electronic Engineers (IEEE)
14. Hydronics Institute (HI)
15. Manufacturers Standardization Society of the Valve and Fitting Industry (MSS)
16. National Fire Protection Association (NFPA)
17. National Electrical Code (NEC)
18. National Electrical Manufacturers Association (NEMA)
19. National Electrical Safety code (NESC)
20. Utah safety Standard (OSHA), Utah State Industrial Council.
21. Sheet Metal and Air Conditioning Contractor's National Association (SMACNA)
22. Underwriters Laboratories (UL)
23. Tubular Exchanger Manufacturers Association, Inc. (TEMA)
24. Heat Exchanger Institute (HEI)
25. Hydraulic Institute (HI)
26. Thermal Insulation Manufacturers Association (TIMA)
27. Scientific Apparatus Makers Association (SAMA)

B. Compliance Verification:

1. All items required by code or specified to conform to the ASME code shall be stamped with the ASME seal.
2. Form U-1, the manufacturer's data report for pressure vessels, is to be included in the Operation and Maintenance Manuals. National Board Register (NBR) numbers shall be provided where required by code.
3. Manufactured equipment which is represented by a UL classification and/or listing, shall bear the UL or equivalent ETL label.

1.5 UTILITIES & FEES

A. All fees for permits required by this work will be paid by this division. The contractor shall obtain the necessary permits to perform this work. Unless noted otherwise, all systems furnished and or installed by this Contractor, shall be complete with all utilities, components, commodities and accessories required for a fully functioning system. This Contractor shall furnish smoke generators when required for testing, furnish glycol for glycol piping systems, full load of salt to fill brine tank for water softening system, furnish cleaners and water treatment additives.

1.6 SUBMITTALS AND SHOP DRAWINGS

A. General: As soon as possible after the contract is awarded, but in no case more than 45 calendar days thereafter, the Contractor shall submit to the Architect manufacturer's data on products and materials to be used in the installation of mechanical systems for this project. The review of the submitted data will require a minimum of **14 days**. The first day starts after the day they are received in the engineer's office to which the project is being constructed from. If the Contractors schedule requires return of submitted literature in less than the allotted time, the Contractor shall accelerate his submittal delivery date. The Contractor shall resubmit all items requiring re-review within **14 days** of returned submittals. Refer to each specification section for items requiring submittal review. **If the re-submittal is returned a 2nd time for correction the Contractor will provide the specific equipment that is specified on the drawings and/or the specifications.** Written approval of the Owner's Representative shall be obtained before installing any such equipment or materials for the project.

B. Review by the Owner's Representative is for general conformance of the submitted equipment to the project specification. **In no way** does such review relieve this Contractor of his obligation to furnish equipment and materials that comply in detail to the specification **nor does it relieve** the Contractor of his obligation to determine actual field dimensions and conditions that may affect his work. **Regardless of any items overlooked** by the submittal review, the requirements of the contract drawings and specifications **must be followed** and are not waived or superseded **in any way** by the review.

C. By description, catalog number, and manufacturer's names, standards of quality have been established by the Architect and the Engineer for certain manufactured equipment items and specialties that are to be furnished by this Division. Alternate products and equipment may be proposed for use only if specifically named in the specifications or if given written prior approval in published addenda. Design equipment is the equipment listed on the drawings or if not listed on the drawings is the equipment first named in the specifications.

D. If the Engineer is required to do additional design work to incorporate changes caused by submitting equipment or products, different than the design equipment specified, as defined above, the contractor shall reimburse the engineer for additional time and expenses at the engineer's current, recognized, hourly rates.

E. Submittal Format: At the contractor's discretion, project submittals may be in either of the formats described in the following paragraphs, but mixing the two formats is not acceptable.

1. Hardcopy Submittal Format: **Six (6)** copies of the descriptive literature covering products and materials to be used in the installation of mechanical systems for this project will be provided for review. The submittals shall be prepared in an orderly manner, contained in a

3-ring loose-leaf binder with index and identification tab for each item or group of items and for each specification section. All items shall be submitted at one time except automatic temperature control drawings and seismic restraint drawings which may be submitted separately within **120 days** of the contract award date. Partial submittals will not be reviewed until the complete submittal is received.

- a. Submitted literature shall bear the Contractor's stamp, indicating that he has checked all equipment being submitted; that each item will fit into the available space with the accesses shown on the drawings; and, further, that each item conforms to the capacity and quality standards given in the contract documents.
- b. Submitted literature shall clearly indicate performance, quality, and utility requirements; shall show dimension and size of connection points; and shall include derating factors that were applied for each item of equipment to provide capacity at job site elevation. Temperature control submittals shall include piping and wiring diagrams, sequence of operation and equipment. Equipment must fit into the available space with allowance for operation, maintenance, etc. Factory piped and wired equipment shall include shop drawings for all internal wiring and piping furnished with the unit.
- c. Submitted literature shall clearly show all required field install wiring, piping, and accessory installations required by the Contractor to provide a complete operating system.

2. Electronic Submittal Format: Identify and incorporate information in each electronic submittal file as follows:

- a. All items shall be submitted at one time except automatic temperature control drawings and seismic restraint drawings which may be submitted separately within **120 days** of the contract award date. Partial submittals will not be reviewed until the complete submittal is received.
- b. Submitted electronic file shall bear the Contractor's stamp, indicating that he has checked all equipment being submitted; that each item will fit into the available space with the accesses shown on the drawings; and, further, that each item conforms to the capacity and quality standards given in the contract documents.
- c. Submitted electronic file shall clearly indicate performance, quality, and utility requirements; shall show dimension and size of connection points; and shall include derating factors that were applied for each item of equipment to provide capacity at job site elevation. Temperature control submittals shall include piping and wiring diagrams, sequence of operation and equipment. Equipment must fit into the available space with allowance for operation, maintenance, etc. Factory piped and wired equipment shall include shop drawings for all internal wiring and piping furnished with the unit.
- d. Submitted electronic file shall clearly show all required field install wiring, piping, and accessory installations required by the Contractor to provide a complete operating system.
- e. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
- f. Name file with submittal number or other unique identifier, including revision identifier.
- g. Electronic file shall be completely electronically searchable or it will be rejected.**
- h. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by:

1) Architect.

- i. Transmittal Form for Electronic Submittals:
 - 1) Use one of the following options acceptable to the Owner:
 - a) **Software-generated form from electronic project management software.**
 - b) **Electronic form.**
 - 2) The Electronic Submittal shall contain the following information:
 - a) Project name.
 - b) Date.
 - c) Name and address of Architect.
 - d) Name of Construction Manager.
 - e) Name of Contractor.
 - f) Name of firm or entity that prepared submittal.
 - g) Names of subcontractor, manufacturer, and supplier.
 - h) Category and type of submittal.
 - i) Submittal purpose and description.
 - j) Specification Section number and title.
 - k) Specification paragraph number or drawing designation and generic name for each of multiple items.
 - l) Drawing number and detail references, as appropriate.
 - m) Location(s) where product is to be installed, as appropriate.
 - n) Related physical samples submitted directly.
 - o) Indication of full or partial submittal.
 - p) Transmittal number[, numbered consecutively].
 - q) Submittal and transmittal distribution record.
 - r) Other necessary identification.
 - s) Remarks.
- j. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - 1) Project name.
 - 2) Number and title of appropriate Specification Section.
 - 3) Manufacturer name.
 - 4) Product name.

1.7 DRAWINGS AND MEASUREMENTS

- A. Construction Drawings: The contract document drawings show the general design, arrangements, and extent of the system. In certain cases, the drawings may include details that show more nearly exact locations and arrangements; however, the locations, as shown diagrammatically, are to be regarded as general.
- B. It shall be the work of this Section to make such slight alterations as may be necessary to make adjustable parts fit to fixed parts, leaving all complete and in proper shape when done. All dimensions given on the drawings shall be verified as related to this work and with the Architect's office before work is started.

- C. This Section shall carefully study building sections, space, clearances, etc., and then provide offsets in piping or ductwork as required to accommodate the building structure without additional cost to the Owner. In any case and at any time during the construction process, a change in location required by obstacles or the installation of other trades not shown on the mechanical plans shall be made without charge.
- D. The drawings shall not be scaled for roughing in measurements nor shall they be used as shop drawings. Where drawings are required for these purposes or where drawings must be made from field measurements, the Contractor shall take the necessary measurements and prepare the drawings. Shop drawings of the various subcontractors shall be coordinated to eliminate all interferences and to provide sufficient space for the installation of all equipment, piping, ductwork, etc.
- E. The drawings and specifications have been prepared to supplement each other and they shall be interpreted as an integral unit with items shown on one and not the other being furnished and installed as though shown and called out on both.
- F. Coordination Drawings: The contractor shall provide coordination drawings for mechanical rooms, fan rooms, equipment rooms, and congested areas to eliminate conflicts with equipment, piping, or work of other trades. The drawings shall be a minimum scale of 1/4 inch= 1 foot and of such detail as may be required by the Engineer to fully illustrate the work. These drawings shall include all piping, conduit, valves, equipment, and ductwork.
- G. Sheet-metal shop drawings will be required for all ductwork in the entire building. These drawings will show all ductwork in the entire building and shall be coordinated with architectural, structural and electrical portions of the project. The contractor shall specifically obtain copies of the structural shop drawings and shall coordinate the ductwork shop drawings with approved structural members. These drawings shall be submitted to the engineer for review prior to any fabrication. The contractor is responsible for all modifications necessary to accommodate duct installation within the structural, architectural and electrical restrictions. These drawings, once reviewed by the engineer, will be made available to all mechanical, electrical, and fire sprinkler subcontractors to coordinate installation of their work.

1.8 CONTRACTOR'S USE OF BUILDING EQUIPMENT

- A. The Contractor may use equipment such as electric motors, fans, heat exchangers, filters, etc., with the written permission of the Owner. As each piece of equipment is used (such as electric motors and fans), maintenance procedures approved by the manufacturer are to be followed. A careful record is to be kept of the length of the time the equipment is used, maintenance procedures followed, and any difficulty encountered. The record is to be submitted to the Owner upon acceptance. All fan belts and filter media (such as bearings) shall be carefully inspected just prior to acceptance. Any excessive wear noted shall require replacement. New filter media shall be installed in air handlers at the time systems are turned over to the owner.

1.9 EXISTING CONDITIONS

- A. The Contractor shall carefully examine all existing conditions that might affect the mechanical system and shall compare these conditions with all drawings and specifications for work included under this contract. He shall, at such time, ascertain and check all conditions that may affect his

work. No allowance shall subsequently be made in his behalf for an extra expense incurred as a result of his failure or neglect to make such examination. This Contractor shall include in his bid proposal all necessary allowances to repair or replace any item that will remain or will be removed, and any item that will be damaged or destroyed by new construction.

- B. The Contractor shall remove all abandoned piping, etc., required by new construction and cap or plug openings. No capping, etc., shall be exposed in occupied areas. All openings of items removed shall be sealed to match adjacent surfaces.
- C. The Contractor shall verify the exact location of all existing services, utilities, piping, etc., and make connections to existing systems as required or as shown on the drawings. The exact location of each utility line, together with size and elevation, shall be established before any on-site lines are installed. Should elevation or size of existing main utility lines make connections to them impossible as shown on drawings, then notification of such shall immediately be given to the Owners Representative for a decision.

1.10 EQUIPMENT CAPACITIES

- A. Capacities shown for equipment in the specifications and on the drawings are the minimum acceptable. No equipment shall be considered as an alternate that has capacities or performance less than that of design equipment.
- B. All equipment shall give the specified capacity and performance at the job-site elevation. Manufacturers' standard ratings shall be adjusted accordingly. All capacities and performances listed on drawings or in specifications are for job-site conditions.

1.11 SEISMIC REQUIREMENTS FOR EQUIPMENT

- A. All equipment shall be furnished structurally adequate to withstand seismic forces as outlined in the International Building Code. Refer to section Mechanical Vibration Controls and Seismic Restraints. Equipment bases shall be designed for direct attachment of seismic snubbers and/or seismic anchors.

1.12 COOPERATION WITH OTHER TRADES

- A. The Contractor shall refer to other drawings and parts of this specification that cover work of other trades that is carried on in conjunction with the mechanical work such that all work can proceed without interference resulting from lack of coordination.
- B. The Contractor shall properly size and locate all openings, chases, sleeves, equipment bases, and accesses. He shall provide accurate wiring diagrams to the Electrical Contractor for all equipment furnished under this Division.
- C. The ceiling cavity must be carefully reviewed and coordinated with all trades. In the event of conflict, the installation of the mechanical equipment and piping shall be in the following order: plumbing, waste, and soil lines; supply, return, and exhaust ductwork; water piping; medical gases; fire protection piping; and pneumatic control piping.

D. The mechanical Contractor shall insure that the installation of all piping, ducts and equipment is in compliance with Articles 110-16 and 384-4 of the National Electrical Code relative to proper clearances in front of and over all electrical panels and equipment. No piping or ductwork will be allowed to run over electrical panel.

1.13 RESPONSIBILITY OF CONTRACTOR

A. The Contractor is responsible for the installation of a satisfactory piece of work in accordance with the true intent of the drawings and specifications. He shall provide, as a part of his work and without expense, all incidental items required even though these items are not particularly specified or indicated. The installation shall be made so that its several component parts will function together as a workable system and shall be left with all equipment properly adjusted and in working order. The Contractor shall familiarize the Owner's Representative with maintenance and lubrication instructions as prepared by the Contractor and shall explain and fully instruct him relative to operating, servicing, and maintenance of them.

B. If a conflict arises between the drawings and the specifications the most stringent procedure/action shall be followed. A clarification to the engineer will help to determine the course of action to be taken. If a conflict arises between specification sections the engineer will determine which course of action is to be followed.

1.14 PIPE AND DUCT OPENINGS AND EQUIPMENT RECESSES

A. Pipe and duct chases, openings, and equipment recesses shall be provided by others only if shown on architectural or structural drawings. All openings for the mechanical work, except where plans and specifications indicate otherwise, shall be provided as work of this Division. Include openings information with coordination drawings.

B. Whether chases, recesses, and openings are provided as work of this Division or by others, this Contractor shall supervise their construction and be responsible for the correct size and location even though detailed and dimensioned on the drawings. This Contractor shall pay for all necessary cutting, repairing, and finishing if any are left out or incorrectly made. All necessary openings thru existing walls, ceilings, floors, roofs, etc. shall be provided by this Contractor unless indicated otherwise by the drawing and/or specifications.

1.15 UNFIT OR DAMAGED WORK

A. Any part of this installation that fails, is unfit, or becomes damaged during construction, shall be replaced or otherwise made good. The cost of such remedy shall be the responsibility of this Division.

1.16 WORKMANSHIP

A. Workmanship shall be the best quality of its kind for the respective industries, trades, crafts, and practices, and shall be acceptable in every respect to the Owner's representative. Nothing contained herein shall relieve the Contractor from making good and perfect work in all details in construction.

1.17 SAFETY REGULATION

- A. The Contractor shall comply with all local, Federal, and OSHA safety requirements in performance with this work. (See General Conditions). This Contractor shall be required to provide equipment, supervision, construction, procedures, and all other necessary items to assure safety to life and property.

1.18 ELECTRICAL SERVICES

- A. All equipment control wiring and all automatic temperature control wiring including all necessary contacts, relays, and interlocks, whether low or line voltage, except power wiring, shall be furnished and installed as work of this Division unless shown to be furnished by Division 26. All such wiring shall be in conduit as required by electrical codes. Wiring in the mechanical rooms, fans rooms and inaccessible ceilings and walls shall be installed in conduit as well. Installation of any and all wiring done under Division 21, 22 and 23 shall be in accordance with the requirements of Division 26, Electrical.
- B. All equipment that requires an electrical connection shall be furnished so that it will operate properly and deliver full capacity on the electrical service available.
- C. Refer to the electrical control equipment and wiring shown on the diagrams. Any changes or additions required by specific equipment furnished shall be the complete responsibility of the Contractor furnishing the equipment.
- D. The Mechanical Contractor must coordinate with the Electrical Contractor to insure that all required components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

1.19 WORK, MATERIALS, AND QUALITY OF EQUIPMENT

- A. Unless otherwise specified, all materials shall be new and of the best quality of their respective kinds and all labor shall be done in a most thorough and workmanlike manner.
- B. Products or equipment of any of the manufacturers cited herein or any of the products approved by the Addenda may be used. However, where lists of products are cited herein, the one first listed in the design equipment used in drawings and schedules to establish size, quality, function, and capacity standards. If other than design equipment is used, it shall be carefully checked for access to equipment, electrical and control requirements, valving, and piping. Should changes or additions occur in piping, valving, electrical work, etc., or if the work of other Contractors would be revised by the alternate equipment, the cost of all changes shall be borne as work of this Division.
- C. The Execution portions of the specifications specify what products and materials may be used. Any products listed in the Product section of the specification that are not listed in the Execution portion of the specification may not be used without written approval by the Engineer.
- D. The access to equipment shown on the drawings is the minimum acceptable space requirements. No equipment that reduces or restricts accessibility to this or any other equipment will be considered.

- E. All major items of equipment are specified in the equipment schedules on the drawings or in these specifications and shall be furnished complete with all accessories normally supplied with the catalog item listed and all other accessories necessary for a complete and satisfactory installation.
- F. All welders shall be certified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code, latest Edition.

1.20 PROTECTION AGAINST WEATHER AND STORING OF MATERIALS

- A. All equipment and materials shall be properly stored and protected against moisture, dust, and wind. Coverings or other protection shall be used on all items that may be damaged or rusted or may have performance impaired by adverse weather or moisture conditions. Damage or defect developing before acceptance of the work shall be made good at the Contractor's expense.
- B. All open duct and pipe openings shall be adequately covered at all times.

1.21 INSTALLATION CHECK

- A. An experienced, competent, and authorized representative of the manufacturer or supplier of each item of equipment indicated in the equipment schedule and the seismic supplier shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier's representative shall be present when the equipment is placed in operation. The equipment supplier's representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is satisfactory to the Engineer.
- B. Each equipment supplier's representative shall furnish to the Owner, through the Engineer, a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it operated satisfactorily.
- C. All costs for this work shall be included in the prices quoted by equipment suppliers.

1.22 EQUIPMENT LUBRICATION

- A. The Contractor shall properly lubricate all pieces of equipment before turning the building over to the Owner. A linen tag shall be attached to each piece of equipment, showing the date of lubrication and the lubricant used. No equipment shall be started until it is properly lubricated.
- B. Necessary time shall be spent with the Owner's Representative to thoroughly familiarize him with all necessary lubrications and maintenance that will be required of him.
- C. Detergent oil as used for automotive purposes shall not be used for this work.

1.23 CUTTING AND PATCHING

- A. No cutting or drilling in structural members shall be done without written approval of the Architect. The work shall be carefully laid out in advance, and cutting, channeling, chasing, or drilling of

floors, walls, partitions, ceilings, or other surfaces necessary for the mechanical work shall be carefully done. Any damage to building, piping, or equipment shall be repaired by professional plasterers, masons, concrete workers, etc., and all such work shall be paid for as work of this Division.

B. When concrete, grading, etc., is disturbed, it shall be restored to original condition as described in the applicable Division of this Specification.

1.24 EXCAVATION AND BACKFILLING

A. All necessary excavations and backfilling for the Mechanical phase of this project shall be provided as work of this Division. Trenches for all underground pipelines shall be excavated to the required depths. The bottom of trenches shall be compacted hard and graded to obtain required fall. Backfill shall be placed in horizontal layers, not exceeding 12 inches in thickness, and properly moistened. Each layer shall be compacted, by suitable equipment, to a density of not less than 95 percent as determined by ASTM D-1557. After pipelines have been tested, inspected, and approved, the trench shall be backfilled with selected material. Excess earth shall be hauled from the job site. Fill materials approved by the Architect shall be provided as work of this Division.

B. No trenches shall be cut near or under any footings without consultation first with the Architect's office. Any trenches or excavations more than 30 inches deep shall be tapered, shored, covered, or otherwise made absolutely safe so that no vehicle or persons can be injured by falling into such excavations, or in any way be harmed by cave-ins, shifting earth, rolling rocks, or by drowning. This protection shall be extended to all persons approaching excavation related to this work whether or not such persons are authorized to be in the vicinity of the construction.

1.25 ACCESS

A. Provide access doors in walls, ceilings and floors by this division unless otherwise noted. For access to mechanical equipment such as valves, dampers, VAV boxes, fans, controls, etc. Refer to Division 8 for door specifications. All access doors shall be 24" x 24" unless otherwise indicated or required. Coordinate location of doors with the Architect prior to installation. If doors are not specified in Division 8, provide the following: Doors in ceilings and wall shall be equal to JR Smith No. 4760 bonderized and painted. Doors in tile walls shall be equal to JR Smith No. 4730 chrome plated. Doors in floors shall be equal to JR Smith No. 4910

B. Valves: Valve must be installed in locations where access is readily available. If access is compromised, as judged by the Mechanical Engineer, these valves shall be relocated where directed at the Contractors expense.

C. Equipment: Equipment must be installed in locations and orientations so that access to all components requiring service or maintenance will not be compromised. If access is compromised, as judged by the Mechanical Engineer, the contractor shall modify the installation as directed by the Engineer at the Contractors expense.

D. It is the responsibility of this division to install terminal boxes, valves and all other equipment and devices so they can be accessed. If any equipment or devices are installed so they cannot be accessed on a ladder a catwalk and ladder system shall be installed above the ceiling to access and service this equipment.

1.26 CONCRETE BASES AND INSERTS

- A. Bases: The concrete bases shall be provided and installed as work by this division. This Division shall be responsible for the proper size and location of bases and shall furnish all required anchor bolts and sleeves with templates to be installed as work of Division 3, Concrete.
- B. All floor-mounted mechanical equipment shall be set on 6-inch high concrete bases, unless otherwise noted or shown on drawings. Such bases shall extend 6 inches beyond equipment or mounting rails on all sides or as shown on the drawings and shall have a 1-inch beveled edge all around.
- C. Inserts: Where slotted or other types of inserts required for this work are to be cast into concrete, they shall be furnished as work of this Division
- D. Concrete inserts and pipe support systems shall be equal to Unistrut P3200 series for all piping where more than one pipe is suspended at a common location. Spacing of the inserts shall match the size and type of pipe and of ductwork being supported. The Unistrut insert and pipe support system shall include all inserts, vertical supports, horizontal support members, clamps, hangers, rollers, bolts, nuts, and any other accessory items for a complete pipe-supporting system.

1.27 CLEANING AND PAINTING

- A. Cleaning: After all tests and adjustments have been made and all systems pronounced satisfactory for permanent operation, this Contractor shall clean all exposed piping, ductwork, insulated members, fixture, and equipment installed under this Section and leave them ready for painting. He shall refinish any damaged finish and leave everything in proper working order. The Contractor shall remove all stains or grease marks on walls, floors, glass, hardware, fixtures, or elsewhere, caused by his workman or for which he is responsible. He shall remove all stickers on plumbing fixtures, do all required patching up and repair all work of others damaged by this division of the work, and leave the premises in a clean and orderly condition.
- B. Painting: Painting of exposed pipe, insulated pipe, ducts, or equipment is work of Division 9, Painting.
- C. Mechanical Contractor: All equipment which is to be furnished in factory prefinished conditions by the mechanical Contractor shall be left without mark, scratch, or impairment to finish upon completion of job. Any necessary refinishing to match original shall be done. Do not paint over nameplates, serial numbers, or other identifying marks.
- D. Removal of Debris, Etc: Upon completion of this division of the work, remove all surplus material and rubbish resulting from this work, and leave the premises in a clean and orderly condition.

1.28 CONTRACT COMPLETION

- A. Incomplete and Unacceptable Work: If additional site visits or design work is required by the Engineer or Architect because of the use of incomplete or unacceptable work by the Contractor, then the Contractor shall reimburse the Engineer and Architect for all additional time and expenses involved.

- B. Maintenance Instructions: The Contractor shall furnish the Owner complete printed and illustrated operating and maintenance instructions covering all units of mechanical equipment, together with parts lists.
- C. Instructions To Owner's Representatives: In addition to any detailed instructions called for, the mechanical Contractor must provide, without expense to the Owner, competent instructors to train the Owner's representatives who will be in charge of the apparatus and equipment, in the care, adjustment, and operation of all parts on the heating, air conditioning, ventilating, plumbing, fire protection, and automatic temperature control equipment. Instruction dates shall be scheduled at time of final inspection. A written report specifying times, dates, and name of personnel instructed shall be forwarded to the Architect. A minimum of four 8-hour instruction periods shall be provided. The instruction periods will be broken down to shorter periods when requested by the Owner. The total instruction hours shall not be reduced. The ATC Contractor shall provide 4 hours of instructions. The remaining hours shall be divided between the mechanical and sheet metal Contractor.
- D. Guarantee: By the acceptance of any contract award for the work herein described or shown on the drawings, the Contractor assumes the full responsibility imposed by the guarantee as set forth herein and in the General Conditions, and should protect himself through proper guarantees from equipment and special equipment Contractors and from subcontractors as their interests may appear.
- E. The guarantee so assumed by the Contractor and as work of this Section is as follows:
 - 1. That the entire mechanical system, including plumbing, heating, and air-conditioning system shall be quiet in operation.
 - 2. That the circulation of water shall be complete and even.
 - 3. That all pipes, conduit, and connections shall be perfectly free from foreign matter and pockets and that all other obstructions to the free passage of air, water, liquid, sewage, and vent shall be removed.
 - 4. That he shall make promptly and free of charge, upon notice from the Owner, any necessary repairs due to defective workmanship or materials that may occur during a period of one year from date of Substantial Completion.
 - 5. That all specialties, mechanical, and patent devices incorporated in these systems shall be adjusted in a manner that each shall develop its maximum efficiency in the operation of the system; i.e., diffusers shall deliver the designed amount of air shown on drawings, thermostats shall operate to the specified limits, etc.
 - 6. All equipment and the complete mechanical, ductwork, piping and plumbing systems shall be guaranteed for a period of one year from the date of the Architect's Certificate of Substantial Completion, this includes all mechanical, ductwork, piping and plumbing equipment and products and is not limited to boiler, chillers, coils, fans, filters etc. Any equipment supplier not willing to comply with this guarantee period shall not submit a bid price for this project. The Contractor shall be responsible for a 100-percent guarantee for the system and all items of equipment for this period. If the contractor needs to provide temporary heating or cooling to the building and or needs to insure systems are installed properly and or to meet the project schedule the guaranteed of all systems and equipment shall be as indicated above, on year from the date of the Architect's Certificate of Substantial Completion.
 - 7. All filters used during construction shall be replaced just before equipment is turned over to the Owner, and all required equipment and parts shall be oiled. Any worn parts shall also be replaced.

8. If any systems or equipment is used for temporary heating or cooling the systems shall be protected so they remain clean. I.e. if the ductwork systems are used temporary filters and a filter holder (not duct-taped to ducts or grilles) shall be installed to insure the systems and the equipment remain clean.

1.29 CURBS

- A. Unless otherwise noted in these specifications or on the documents all roof curbs for all equipment are to be provided by Division 22 and 23.

1.30 TEST RUN

- A. The Mechanical Contractor shall operate the mechanical system for a minimum of 30 days to prove the operation of the system.

1.31 EQUIPMENT STARTUP AND CHECKOUT:

- A. Each major piece of equipment shall be started and checked out by an authorized representative of the equipment manufacturer. A certificate indicating the equipment is operating to the satisfaction of the manufacturer shall be provided and shall be included in the commissioning report.
- B. This contractor shall coordinate commissioning procedures and activities with the commissioning agent.

1.32 DEMOLITION

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - B. Proceed with demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 - C. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - D. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - E. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 - F. Maintain adequate ventilation when using cutting torches.

- G. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
- H. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
- I. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- J. Dispose of demolished items and materials promptly.
- K. Return elements of construction and surfaces that are to remain to condition existing before selective demolition operations began.
- L. Existing Facilities: Comply with building manager's requirements for using and protecting elevators, stairs, walkways, loading docks, building entries, and other building facilities during selective demolition operations.
- M. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals, using power-driven saw, then remove concrete between saw cuts.
- N. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.
- O. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.
- P. Air-Conditioning Equipment: Remove equipment without releasing refrigerants.

END OF SECTION 23 0100

SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
6. Escutcheons.
7. Grout.
8. Equipment installation requirements common to equipment sections.
9. Painting and finishing.
10. Concrete bases.
11. Supports and anchorages.
12. Link-Seal

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, and crawlspaces.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces, mechanical equipment rooms, accessible pipe shafts, accessible plumbing chases, and accessible tunnels.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:

1. CPVC: Chlorinated polyvinyl chloride plastic.
2. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, **1/8-inch** maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, **1/8 inch** thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

1. Manufacturers:

a. Eslon Thermoplastics.

B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

1. Manufacturers:

a. Thompson Plastics, Inc.

2.5 DIELECTRIC FITTINGS

A. General: Assembly or fitting with insulating material isolating joined dissimilar metals, to prevent galvanic action and stop corrosion.

B. Description: Combination of copper alloy and ferrous; threaded, solder, plain, and weld-neck end types and matching piping system materials.

C. Insulating Material: Suitable for system fluid, pressure, and temperature.

D. Dielectric Unions: Factory-fabricated, union assembly, for **250-psig** minimum working pressure at **180 deg F**.

E. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for **300-psig** minimum working pressure as required to suit system pressures.

F. Dielectric-Flange Insulation Kits: Field-assembled, companion-flange assembly, full-face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Provide separate companion flanges and steel bolts and nuts for **300-psig** minimum working pressure as required to suit system pressures.

G. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and **300-psig** minimum working pressure at **225 deg F**.

H. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and **300-psig** minimum working pressure at **225 deg F**.

1. Manufacturers:

- a. Capitol Manufacturing Co.
- b. Central Plastics Company.
- c. Watts Industries, Inc.; Water Products Div

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: **0.0239-inch** minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated and rough brass.
- D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
- E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, non-staining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: **5000-psi**, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.10 LINK-SEAL MODULAR SEAL PRESSURE PLATES

- A. Link-Seal® modular seal pressure plates shall be molded of glass reinforced Nylon Polymer with the following properties:
 - 1. Izod Impact - Notched = **2.05ft-lb/in.** per ASTM D-256
 - 2. Flexural Strength @ Yield = **30,750 psi** per ASTM D-790
 - 3. Flexural Modulus = **1,124,000 psi** per ASTM D-790
 - 4. Elongation Break = 11.07% per ASTM D-638
 - 5. Specific Gravity = 1.38 per ASTM D-792
- B. Models LS200-275-300-315 shall incorporate the most current Link-Seal® Modular Seal design modifications and shall include an integrally molded compression assist boss on the top (bolt entry side) of the pressure plate, which permits increased compressive loading of the rubber sealing element. Models 315-325-340-360-400-410-425-475-500-525-575-600 shall incorporate an integral recess known as a “Hex Nut Interlock” designed to accommodate commercially available fasteners to insure proper thread engagement for the class and service of metal hardware. All pressure plates shall have a permanent identification of the manufacturer’s name molded into it.
- C. For fire service, pressure plates shall be steel with 2-part Zinc Dichromate Coating.
- D. Link-Seal® Modular Seal Hardware: All fasteners shall be sized according to latest Link-Seal® modular seal technical data. Bolts, flange hex nuts shall be:
 - 1. 316 Stainless Steel per ASTM F593-95, with a **85,000 psi** average tensile strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.

- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
- M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas **2 inches** above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide **1/4-inch** annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. PVC Steel Pipe Sleeves: For pipes smaller than **NPS 6**.
 - b. Steel Sheet Sleeves: For pipes **NPS 6** and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to **2 inches** above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than **6 inches** in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves **6 inches** and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for **1-inch** annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble

mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping **NPS 2** and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping **NPS 2-1/2** and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on **18-inch** centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use **3000-psi**, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Miscellaneous Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.9 LINK SEAL

- A. Provide Link Seal at all piping penetrations from the outside.

END OF SECTION 230500

SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:

- 1. Escutcheons.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated or rough-brass finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type with polished, chrome-plated finish.
- b. Chrome-Plated Piping: **One-piece, cast-brass** type with polished, chrome-plated finish.
- c. Insulated Piping: **One-piece, stamped-steel type with chrome-plated finish.**
- d. Bare Piping 2 inch and Smaller at Wall and Floor Penetrations in Finished Spaces: **One-piece, cast-brass** type with polished, chrome-plated finish.
- e. Bare Piping Larger than 2 inch at Wall and Floor Penetrations in Finished Spaces: **One-piece, stamped-steel type with polished, chrome-plated finish,**
- f. Bare Piping 2 inch and Smaller at Ceiling Penetrations in Finished Spaces: **One-piece, cast-brass** type with polished, chrome-plated finish.
- g. Bare Piping Larger than 2 inch at Ceiling Penetrations in Finished Spaces: **One-piece, stamped-steel type with polished, chrome-plated finish,**
- h. Bare Piping 2 inch and Smaller in Unfinished Service Spaces: **One-piece, cast-brass.**
- i. Bare Piping Larger than 2 inch in Unfinished Service Spaces: **One-piece, stamped-steel type with polished, chrome-plated finish,**
- j. Bare Piping 2 inch and Smaller in Equipment Rooms: **One-piece, cast-brass** type with **polished, chrome-plated** finish.
- k. Bare Piping in Equipment Rooms Larger than 2 inch: **One-piece, stamped-steel type with chrome- or cadmium-plated finish.,**

3.2 FIELD QUALITY CONTROL

- A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.

- B. Related Sections:

1. **Division 05** for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
3. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation devices.
4. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to **ASCE/SEI 7**.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.

B. Shop Drawings: **Signed and sealed by a qualified professional engineer.** Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
5. Hanger Rods: Continuous-thread rod, nuts, and washer made of **carbon steel**.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO/Michigan Hanger Co. ; ERISTRUT Div.
 - d. FNW/Ferguson Enterprises
 - e. GS Metals Corp.
 - f. Hilti, Inc.insert manufacturer's name.
 - g. Power-Strut Div. Tyco International.
 - h. Thomas & Betts Corporation.
 - i. Tolco Inc.
 - j. Unistrut; an Atkore International company.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
3. Standard: MFMA-4.
4. Channels: Continuous slotted steel channel with inturned lips.
5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
6. Hanger Rods: Continuous-thread rod, nuts, and washer made of **carbon steel**.
7. Metallic Coating:
 - a. **Electroplated zinc.**

B. Non-MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Empire Industries, Inc.
 - c. ERICO International Corporation.
 - d. FNW/Ferguson Enterprises
 - e. Haydon Corporation.
 - f. NIBCO INC.
 - g. PHD Manufacturing, Inc.
 - h. PHS Industries, Inc.
2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
3. Standard: Comply with MFMA-4.
4. Channels: Continuous slotted steel channel with inturned lips.
5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
6. Hanger Rods: Continuous-thread rod, nuts, and washer made of **carbon steel**.
7. Coating:
 - a. **Zinc.**

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
2. Clement Support Services.
3. ERICO International Corporation.
4. National Pipe Hanger Corporation.
5. PHS Industries, Inc.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.

- B. Insulation-Insert Material for Cold Piping:
 - 1. **Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.**
- C. Insulation-Insert Material for Hot Piping:
 - 1. **Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.**
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: **5000-psi**, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 230548 "Vibration and Seismic Controls for HVAC."
- B. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- C. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- G. Install lateral bracing with pipe hangers and supports to prevent swaying.
- H. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, **NPS 2-1/2** and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- K. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating **above** Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating **below** Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for **trapeze pipe hangers**.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to **1-1/2 inches**.

3.4 PAINTING

- A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in **Division 09**.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel **pipe hangers and supports** and attachments for general service applications.
- F. Use padded hangers for piping that is subject to scratching.
- G. Use thermal-hanger shield inserts for insulated piping and tubing.
- H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes **NPS 1/2 to NPS 30**.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes **NPS 4 to NPS 24**, requiring up to **4 inches** of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes **NPS 3/4 to NPS 36**, requiring clamp flexibility and up to **4 inches** of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes **NPS 1/2 to NPS 24** if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes **NPS 1/2 to NPS 4**, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes **NPS 3/4 to NPS 8**.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes **NPS 1/2 to NPS 8**.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes **NPS 1/2 to NPS 8**.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes **NPS 1/2 to NPS 8**.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes **NPS 3/8 to NPS 8**.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes **NPS 3/8 to NPS 3**.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes **NPS 1/2 to NPS 30**.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes **NPS 4 to NPS 36**, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes **NPS 4 to NPS 36**, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes **NPS 2-1/2 to NPS 36** if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes **NPS 1 to NPS 30**, from two rods if longitudinal movement caused by expansion and contraction might occur.
 - 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes **NPS 2-1/2 to NPS 24**, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes **NPS 2 to NPS 42** if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes **NPS 2 to NPS 24** if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes **NPS 2 to NPS 30** if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers **NPS 3/4 to NPS 24**.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers **NPS 3/4 to NPS 24** if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): **750 lb.**
 - b. Medium (MSS Type 32): **1500 lb.**
 - c. Heavy (MSS Type 33): **3000 lb.**
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed **1-1/4 inches**.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use **powder-actuated fasteners** instead of building attachments where required in concrete construction.

END OF SECTION 230529

SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SCOPE

- A. Provide engineered vibration isolation and restraint systems in accordance with the requirements of this section including design, engineering, materials, testing, inspections and reports.
- B. Mechanical equipment with moving parts shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure.
- C. All mechanical equipment, piping and ductwork shall be restrained as required by Federal, State and Local building codes to preserve the integrity of nonstructural building components during **seismic** events to minimize hazards to occupants and reduce property damage.

1.3 SUMMARY

- A. This Section includes the following:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Open-spring isolators.
 5. Housed-spring isolators.
 6. Restrained-spring isolators.
 7. Housed-restrained-spring isolators.
 8. Pipe-riser resilient supports.
 9. Resilient pipe guides.
 10. Air-spring isolators.
 11. Restrained-air-spring isolators.
 12. Elastomeric hangers.
 13. Spring hangers.
 14. Snubbers.
 15. Restraint channel bracings.
 16. Restraint cables.
 17. Seismic-restraint accessories.
 18. Mechanical anchor bolts.
 19. Adhesive anchor bolts.
 20. Vibration isolation equipment bases.

21. Restrained isolation roof-curb rails.
22. Certification of **seismic** restraint designs.
23. Installation supervision.
24. Design of attachment of housekeeping pads.
25. All components requiring IBC compliance and certification.
26. All inspection and test procedures for components requiring IBC compliance.
27. Restraint of all mechanical equipment, pipe and ductwork, within, on, or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.
28. Seismic certification of equipment

1.4 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. ASCE: American Society of Civil Engineers
- D. OSHPD: Office of Statewide Health Planning and Development for the State of California.
- E. Ip: Importance Factor.
- F. ESSENTIAL FACILITIES, (Occupancy Category IV, IBC-2018)
 1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.
- G. LIFE SAFETY
 1. All systems involved with fire protection, including sprinkler piping, jockey pumps, fire pumps, control panels, service water supply piping, water tanks, fire dampers, smoke exhaust systems and fire alarm panels.
 2. All mechanical, electrical, plumbing or fire protection systems that support the operation of, or are connected to, emergency power equipment, including all lighting, generators, transfer switches and transformers.
 3. All medical and life support systems.
 4. Hospital heating systems and air conditioning systems for maintaining normal ambient temperature.
 5. Automated supply, exhaust, fresh air and relief air systems on emergency control sequence, including air handlers, duct, dampers, etc., or manually-operated systems used for smoke evacuation, purge or fresh air relief by the fire department.
 6. Heating systems in any facility with Occupancy Category IV, IBC-2009 where the ambient temperature can fall below 32 degrees Fahrenheit.
- H. HIGH HAZARD

1. All gases or fluids that must be contained in a closed system which are flammable or combustible.
Any gas that poses a health hazard if released into the environment and vented Fuel Cells.

1.5 REFERENCE CODES AND STANDARDS

- A. Codes and Standards: The following shall apply and conform to good engineering practices unless otherwise directed by the Federal, State or Local authorities having jurisdiction.
 1. IBC
 2. ASCE 7
 3. NFPA 13 (National Fire Protection Association)
 4. IBC 2018 replaces all references to IBC 2006, 2009, 2012.
- B. The following guides may be used for supplemental information on typical seismic installation practices. Where a conflict exists between the guides and these construction documents, the construction documents will preside.
 1. FEMA (Federal Emergency Management Agency) manuals 412, Installing Seismic Restraints for Mechanical Equipment and 414, Installing Seismic Restraints for Ductwork and Pipe.
 2. SMACNA (Sheet Metal and Air-conditioning Contractors' National Association) Seismic Restraint Manual Guidelines for Mechanical Systems, 3rd ed.
 3. ASHRAE (American Society for Heating, Refrigerating and Air-conditioning Engineers) A Practical Guide to Seismic Restraint
 4. MSS (Manufacturers Standardization Society of the Valve and Fittings Industry) MSS SP-127, Bracing for Piping Systems, Seismic – Wind – Dynamic, Design, Selection, Application.

1.6 ISOLATOR AND RESTRAINT MANUFACTURER'S RESPONSIBILITIES:

- A. Provide project specific vibration isolation and seismic restraint design prepared by a registered design professional in the state where the project is being constructed, and manufacturer certifications that the components are seismically qualified.
 1. Provide calculations to determine restraint loads resulting from seismic forces as required by IBC, Chapter 16 and ASCE 7, latest editions. Seismic calculations shall be certified by an engineer licensed in the state where the project is being constructed.
- B. Provide installation instructions and shop drawings for all materials supplied under this section of the specifications.
 1. Provide seismic restraint details with specific information relating to the materials, type, size, and locations of anchorages; materials used for bracing; attachment requirements of bracing to structure and component; and locations of transverse and longitudinal sway bracing and rod stiffeners.
 2. Provide seismic bracing layout drawings indicating the location of all seismic restraints.

- a. Each piece of rotating isolated equipment shall be tagged to clearly identify quantity and size of vibration isolators and seismic restraints.
- C. Provide, in writing, the special inspection requirements for all Designated Seismic Systems as indicated in Chapter 17 of the IBC.
- D. Provide training for installation, operation and maintenance of isolation and restraint systems.

1.7 PERFORMANCE REQUIREMENTS

- A. Flood-Restraint Loading: Per the structural drawings and specifications.
- B. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: Per the structural drawings and specifications.
 - 2. Assigned Occupancy Category as Defined in the IBC: Per the structural drawings and specifications.
 - a. Component Importance Factor: 1.5.
 - 1) Life safety components required to function after an earthquake.
 - 2) Components containing hazardous or flammable materials in quantities that exceed the exempted amounts for an open system listed in Chapter 4.
 - 3) For structures with an Occupancy Category IV, components needed for continued operation of the facility or whose failure could impair the continued operation of the facility.
 - 4) Storage racks in occupancies open to the general public (e.g., warehouse retail stores).
 - b. Component Importance Factor: 1.0.
 - 1) All other components
 - c. Component Response Modification Factor: Per the structural drawings and specifications.
 - d. Component Amplification Factor: Per the structural drawings and specifications.
 - 3. Design Spectral Response Acceleration at Short Periods: Per the structural drawings and specifications.
 - 4. Design Spectral Response Acceleration at 1-Second Period: Per the structural drawings and specifications.

1.8 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Submittals shall include catalog cut sheets and installation instructions for each type of anchor and seismic restraint used on equipment or components being isolated and/or restrained.
 - 2. Submittals for mountings and hangers incorporating springs shall include spring diameter and free height, rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

- a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an **evaluation service member of ICC-ES**.
- b. Annotate to indicate application of each product submitted and compliance with requirements.

4. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. “Basis for Design” report: Statement from the registered design professional that the design complies with the requirements of the ASCE 7-10 Chapter 13, IBC 2018 chapter 1908 and ACI 318. In addition, the basis for compliance must also be noted, as listed below:
 - a. Project specific design documentation prepared and submitted by a registered design professional (ASCE 7, 13.2.1.1)
 - b. Submittal of the manufacturer’s certification that the isolation equipment is seismically qualified by:
 - c. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - d. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - e. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
2. Seismic restraint load ratings must be certified and substantiated by testing or calculations under direct control of a registered professional engineer. Copies of testing and calculations must be submitted as part of submittal documents. OSHPD pre-approved restraint systems are exempt from this requirement if their pre-approval is current and based upon the IBC 2009 (i.e. OPA-07 pre-approval numbers).
3. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
4. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, **seismic** forces required to select vibration isolators, **seismic** restraints, and for designing vibration isolation bases.

- a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.
5. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
6. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
7. **Seismic-Restraint Details:**
 - a. Design Analysis: To support selection and arrangement of **seismic** restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By **an evaluation service member of ICC-ES**, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.9 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
 1. Submittal drawings and calculations must be stamped by a registered professional engineer in the State where the project is being constructed who is responsible for the seismic restraint design.
 2. Calculations and restraint device submittal drawings shall specify anchor bolt type, embedment, concrete compressive strength, minimum spacing between anchors, and minimum distances of anchors from concrete edges. Concrete anchor locations shall not be near edges, stress joints, or an existing fracture. All bolts shall be ASTM A307 or better.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Field quality-control test reports.

1.10 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

1.11 SEISMIC CERTIFICATION OF EQUIPMENT

- A. Component Importance Factor. All plumbing and mechanical components shall be assigned a component importance factor. The component importance factor, Ip , shall be taken as 1.5 if any of the following conditions apply:
 - 1. The component is required to function for life-safety purposes after an earthquake.
 - 2. The component contains hazardous materials.
 - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip , equal to 1.0.
- C. For equipment or components where $Ip = 1.0$.
 - 1. Submit manufacturer's certification that the equipment is seismically qualified by:
 - a. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - b. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - c. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - 2. The equipment and components listed below are considered rugged and shall not require Special Seismic Certification:
 - a. Valves (not in cast-iron housings, except for ductile cast iron).

- b. Pneumatic operators.
- c. Hydraulic operators.
- d. Motors and motor operators.
- e. Horizontal and vertical pumps (including vacuum pumps).
- f. Air compressors
- g. Refrigerators and freezers.
- h. Elevator cabs.
- i. Underground tanks.
- j. Equipment and components weighing not more than 20 lbs. supported directly on structures (and not mounted on other equipment or components) with supports and attachments in accordance with Chapter 13, ASCE 7.

3. Rugged equipment and components in this section are for factory assembled discrete equipment and components only and do not apply to site assembled or field assembled equipment or equipment anchorage. The list is based in part on OSHPD Code Application Notice 2-1708A.5.

D. Special Certification requirements for Designated Seismic Systems (i.e. $I_p = 1.5$): Seismic Certificates of Compliance supplied by manufacturers shall be submitted for all components that are part of Designated Seismic Systems. In accordance with the ASCE 7, certification shall be via one of the following methods:

- 1. For active mechanical and electrical equipment that must remain operable following the design earthquake:
 - a. Testing as detailed by part C.1.b above.
 - b. Experience data as detailed by part C.1.c above.
 - c. Equipment that is considered “rugged” per part C.2 above.
- 2. Components with hazardous contents shall be certified by the manufacturer as maintaining containment following the design earthquake by:
 - a. Testing as detailed by part C.1.b above.
 - b. Experience data as detailed by part C.1.c above.
 - c. Engineering analysis utilizing dynamic characteristics and forces. Tanks (without vibration isolators) designed by a registered design professional in accordance with ASME Boiler and Pressure Vessel Code, and satisfying the force and displacement requirements of Sections 13.3.1 and 13.3.2 of ASCE 7 having an importance factor, $I_p = 1.0$ shall be considered to satisfy the Special Seismic Certification requirements on the basis of ASCE 7 Section 13.6.9.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Amber/Booth Company, Inc.

2. CalDyn (California Dynamics Corporation).
3. ISAT (International Seismic Application Technology).
4. Kinetics Noise Control.
5. Mason Industries.
6. Vibro-Acoustics
7. VMC (Vibration Mountings & Controls, Inc.)

B. Elastomeric Isolation Pads **P1**:

1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2. Size: Factory or field cut to match requirements of supported equipment.
3. Pad Material: Oil and water resistant with elastomeric properties.
4. Surface Pattern: **Ribbed** pattern.
5. Load-bearing metal plates adhered to pads.

C. Double-Deflection, Elastomeric Isolation Mounts **M1**:

1. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded, or with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

D. Restrained Elastomeric Isolation Mounts **M2**:

1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.
 - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

E. Spring Isolators **S1**: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

F. **Restrained Spring Isolators S2:** Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. **Housing:** Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation. Baseplates shall limit floor load to 500 psig.
2. **Restraint:** Seismic or limit stop as required for equipment and authorities having jurisdiction.
3. **Outside Spring Diameter:** Not less than 80 percent of the compressed height of the spring at rated load.
4. **Minimum Additional Travel:** 50 percent of the required deflection at rated load.
5. **Lateral Stiffness:** More than 80 percent of rated vertical stiffness.
6. **Overload Capacity:** Support 200 percent of rated load, fully compressed, without deformation or failure.

G. **Housed Restrained Spring Isolators S3:** Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. **Two-Part Telescoping Housing:** A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with **adjustable** snubbers to limit vertical movement.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
2. **Outside Spring Diameter:** Not less than 80 percent of the compressed height of the spring at rated load.
3. **Minimum Additional Travel:** 50 percent of the required deflection at rated load.
4. **Lateral Stiffness:** More than 80 percent of rated vertical stiffness.
5. **Overload Capacity:** Support 200 percent of rated load, fully compressed, without deformation or failure.
6. **Elastomeric pad:** For high frequency absorption at the base of the spring.

H. **Elastomeric Hangers H1:**

1. **Description:** Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods
 - a. **Frame:** Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. **Dampening Element:** Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

- I. Spring Hangers **H2**: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 1. Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and Insert in Compression.
 - a. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - g. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- J. Spring Hangers with Vertical-Limit Stop **H3**: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 1. Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and insert in Compression and vertical limit stop.
 - a. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - g. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - h. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- K. Pipe Riser Resilient Support **R1**:
 1. Description: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene.
 - a. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - b. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

L. Resilient Pipe Guides **R2**:

1. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.
 - a. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

M. Horizontal Thrust Restraints **T1**: Modified specification S2 isolator.

1. Horizontal thrust restraints shall consist of a modified specification S2 spring mounting. Restraint springs shall have the same deflection as the isolator springs.
2. The assembly shall be preset at the factory and fine tuned in the field to allow for a maximum of 1/4" movement from stop to maximum thrust.
3. The assemblies shall be furnished with rod and angle brackets for attachment to both the equipment and duct work or the equipment and the structure.
4. Restraints shall be attached at the center line of thrust and symmetrically on both sides of the unit.

2.2 RESTRAINED VIBRATION ISOLATION ROOF-CURB RAILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
2. CalDyn (California Dynamics Corporation).
3. ISAT (International Seismic Application Technology).
4. Kinetics Noise Control.
5. Mason Industries.
6. Vibro-Acoustics
7. VMC (Vibration Mountings & Controls, Inc.)

B. Restrained Vibration Isolation Roof-Curb Rails: **RC1**:

C. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.

D. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist **seismic** forces.

E. Lower Support Assembly: The lower support assembly shall be a formed sheet-metal section containing adjustable and removable steel springs that support upper frame. Lower support assembly shall have a means for attaching to building structure and a wood nailing for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.

F. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on 1/4-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are

accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

1. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic and wind restraint.
 - a. Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch-thick.
- H. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailing of lower support assembly, and counterflushed over roof materials.
- I. All roof curbs shall be at least 8-inches (MIN) above the roof membrane.

2.3 VIBRATION ISOLATION EQUIPMENT BASES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Amber/Booth Company, Inc.
 2. CalDyn (California Dynamics Corporation).
 3. ISAT (International Seismic Application Technology).
 4. Kinetics Noise Control.
 5. Mason Industries.
 6. Vibro-Acoustics
 7. VMC (Vibration Mountings & Controls, Inc.)
- B. Steel Bases and Rails **SB1**: Factory-fabricated, welded, structural-steel bases and rails.
 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

C. Inertia Base **IB1**: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.

1. Design Requirements: Lowest possible mounting height with not less than **2-inch** clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.4 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
2. CalDyn (California Dynamics Corporation).
3. ISAT (International Seismic Application Technology).
4. Kinetics Noise Control.
5. Mason Industries.
6. Vibro-Acoustics
7. VMC (Vibration Mountings & Controls, Inc.)

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by **an evaluation service member of ICC-ES**.

1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.

D. Channel Support System: MFMA-4, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

- E. Restraint Cables: ASTM A 603 galvanized or ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. Cables located in exterior or other wet locations such as wash-down areas shall be stainless steel.
- F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- G. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- H. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- I. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- J. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- K. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- L. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
- M. All post installed anchors utilized in the seismic design must be qualified for use in cracked concrete and approved for use with seismic loads.
- N. Expansion anchors shall not be used for anchorage of equipment with motors rated over 10 HP with the exception of undercut expansion anchors. Spring or internally isolated equipment are exempt from this requirement.
- O. All beam clamps utilized for vertical support must also incorporate retention straps.
- P. All seismic brace arm anchorages to include concrete anchors, beam clamps, truss connections, etc., must be approved for use with seismic loads.

2.5 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and **seismic** control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and **seismic** control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 COORDINATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in **Division 03 Section "Cast-in-Place Concrete."**
- B. Coordinate size, shape, reinforcement and attachment of all housekeeping pads supporting vibration/seismically rated equipment. Concrete shall have a minimum compressive strength of 4,000 psi or as specified by the project engineer. Coordinate size, thickness, doweling, and reinforcing of concrete equipment housekeeping pads and piers with vibration isolation and seismic restraint device manufacturer to ensure adequate space, embedment and prevent edge breakout failures. Pads and piers must be adequately doweled in to structural slab.
- C. Housekeeping pads shall have adequate space to mount equipment and seismic restraint devices.
- D. Housekeeping Pads must be adequately reinforced and adequately sized for proper installation of equipment anchors and shall also be large enough and thick enough to ensure adequate edge distance and embedment depth for restraint anchor bolts to avoid housekeeping pad breakout failure. Refer seismic restraint manufacturer's written instructions.
- E. Coordinate with vibration/seismic restraint manufacturer and the structural engineer of record to locate and size structural supports underneath vibration/seismically restrained equipment (e.g. roof curbs, cooling towers and other similar equipment). Installation of all seismic restraint materials specified in this section shall be accomplished as per the manufacturer's written instructions. Adjust isolators and restraints after piping systems have been filled and equipment is at its operating weight, following the manufacturer's written instructions.

3.3 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by **an evaluation service member of ICC-ES** and per the seismic restraint manufacturer's design.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.4 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.
- C. Isolate all mechanical equipment 0.75 hp and over per the isolator and seismic restraint schedule and these specifications. Vibration isolators shall be selected in accordance with the equipment, pipe or duct weight distribution so as to produce reasonably uniform deflections
- D. All isolation materials and seismic restraints shall be of the same vendor and shall be selected and certified using published or factory certified data
- E. Installation of all vibration isolation materials, flexible connectors and supplemental equipment bases specified in this section shall be accomplished as per the manufacturer's written instructions with mountings adjusted to level equipment. Any variance or non-compliance with the manufacturer's instructions shall be reviewed and approved in writing by the manufacturer or corrected by the contractor in an approved manner.
- F. Installation of vibration isolators must not cause any change of position of equipment, piping or duct work resulting in stresses or misalignment.
- G. Locate isolation hangers as near to the overhead support structure as possible.
- H. No rigid connections between isolated components and the building structure shall be made that degrades the noise and vibration control system herein specified. "Building" includes, but is not limited to, slabs, beams, columns, studs and walls. "Components" includes, but is not limited to, mechanical equipment, piping and ducts.
- I. Coordinate work with other trades to avoid rigid contact with the building.
- J. Any conflicts with other trades which will result in rigid contact with equipment or piping due to inadequate space or other unforeseen conditions should be brought to the architects/engineers attention prior to installation. Corrective work necessitated by conflicts after installation shall be at the responsible contractor's expense.

- K. Bring to the architects/engineers attention any discrepancies between the specifications and the field conditions or changes required due to specific equipment selection, prior to installation. Corrective work necessitated by discrepancies after installation shall be at the responsible contractor's expense.
- L. Correct, at no additional cost, all installations which are deemed defective in workmanship and materials at the contractor's expense.
- M. Use horizontal thrust restraints **T1** to protect Air handling equipment and centrifugal fans against excessive displacement which results from high air thrust when thrust forces exceed 10% of the equipment weight.
- N. Isolated equipment, duct and piping located on roofs must be attached to the structure. Supports (e.g., sleepers) that are not attached to the structure will not be acceptable.
- O. On completion of installation of all isolation materials and before startup of isolated equipment all debris shall be cleared from areas surrounding and from beneath all isolated equipment, leaving equipment free to move on the isolation supports.
- P. All floor mounted isolated equipment shall be protected with specification M1, M2, S1, S2 or S3 isolator.
- Q. Horizontal Pipe Isolation: All HVAC pumped water, pumped condensate, glycol, and refrigerant piping size 1-1/4" and larger within mechanical rooms shall be isolated. Outside equipment rooms this piping shall be isolated for the greater of 50' or 100 pipe diameters from rotating equipment. For the first three (3) support locations from externally isolated equipment provide specification H2 or H3 hangers or specification S1, S2 or S3 mounts with the same deflection as equipment isolators (max 2"). All other piping within the equipment rooms shall be isolated with the same specification isolators with a 3/4" minimum deflection. Steam piping size 1-1/4" and larger which is within an equipment room and connected to rotating equipment shall be isolated for three (3) support locations from the equipment. Provide specification H2 or H3 hangers, or specification S1 or S2 mounts with the same deflection as equipment isolators but a minimum of 3/4".
- R. Install full line size flexible pipe connectors at the inlet and outlet of each pump, cooling tower, condenser, chiller, coiling connections and where shown on the drawings. All connectors shall be suitable for use at the temperature, pressure, and service encountered at the point of installation and operation. End fitting connectors shall conform to the pipefitting schedule. Control rods or protective braid must be used to limit elongation to 3/8". Flexible connectors shall not be required for suspended in-line pumps.
- S. All plumbing pumped water, piping size 1-1/4" and larger within mechanical rooms shall be isolated the same as HVAC piping above. Isolators are not required for any plumbing pumped water, pumped condensate, and steam piping outside of mechanical rooms unless listed in the isolation schedule.
- T. Pipe Riser Isolation: The operating weight of all variable temperature vertical pipe risers 1-1/4" and larger, requiring isolation where specifically shown and detailed on riser drawings shall be fully supported by specification M1, M2 or R1 supports. S1, S2, S3, H2 or H3 steel spring deflection isolators with minimum 3/4-inch minimum shall be in those locations where added deflection is required due to pipe expansion and contraction. Spring deflection shall be a

minimum of 4 times the anticipated deflection change. Springs shall be selected to keep the riser in tension. Height saving brackets used with isolators having 2.5" deflection or greater shall be of the precompression type to limit exposed bolt length. Specification R1 riser supports shall be installed near the center point of the riser to anchor the riser when spring isolation is used. Specification R2 riser guides may be used in conjunction with spring isolators per design calculations. Pipe risers up through 16" shall be supported at intervals of every third floor of the building. Pipe risers 18" and over, every second floor. Wall sleeves for take-offs from riser shall be sized for insulation O.D. plus two times the anticipated movement to prevent binding. Horizontal take-offs and at upper and lower elbows shall be supported with spring isolators as required to accommodate anticipated movement. In addition to submittal data requirements previously outlined, riser diagrams and calculations shall be submitted for approval. Calculations must show anticipated expansion and contraction at each support point, initial and final loads on the building structure, and spring deflection changes. Submittal data shall include certification that the riser system has been examined for excessive stresses and that none will exist if installed per design proposed.

- U. Where riser pipes pass through cored holes, core diameters shall be a maximum of 2" larger than pipe O.D. including insulation. Cored holes must be packed with resilient material or firestop as provided by other sections of this specification or local codes. Where seismic restraint is required specification isolator S3 shall support risers and provide longitudinal restraint at floors where thermal expansion is minimal and will not bind isolator restraints.
- V. Duct Isolation: Isolate all duct work with a static pressure 2" W.C. and over in equipment rooms and to minimum of 50 feet from the fan or air handler. Use specification type H2 or H3 hangers or type S1 or S2 floor mounts.

3.5 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment Restraints:
 1. On projects with Seismic Site Class A or B, seismic design or restraint is not required.
 2. On projects with Seismic Design Category C: Components with an importance factor of 1.0 do not require seismic design or restraint.
 3. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 4. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 5. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES** providing required submittals for component.
 6. Suspended Equipment: All suspended equipment that meets any of the following conditions requires seismic restraints as specified by the supplier:
 - a. Rigidly attached to pipe or duct that is 75 lbs. and greater,

- b. Items greater than 20 lbs and distribution systems weighing more than 5 lbs/lineal foot, with an importance factor of 1.0 hung independently or with flexible connections.
- c. Possibility of consequential damage.
- d. For importance factors greater than 1.0 all suspended equipment requires seismic restraint regardless of the above notes.
- e. Wall mounted equipment weighing more than 20 lbs.
- f. Exemptions:
 - 1) Equipment weighing less than 20 lbs and distribution systems weighing less than 5 lbs/lineal foot, with an $Ip = 1.0$ and where flexible connections exist between the component and associated ductwork, piping or conduit.

7. Base Mounted Equipment: All base mounted equipment that meets any of the following conditions requires attachments and seismic restraints as specified by the supplier:

- a. Connections to or containing hazardous material,
- b. With an overturning moment.
- c. Weight greater than 400 lbs.
- d. Mounted on a stand 4 ft. or more from the floor
- e. Possibility of consequential damage.
- f. For importance factors greater than 1.0 all base mounted items require seismic restraints regardless of the above notes.
- g. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
- h. Exemptions:
 - 1) Floor or curb-mounted equipment weighing less than 400 lbs and not resiliently mounted, where the Importance Factor, $Ip = 1.0$, the components are mounted at 4 feet or less above a floor level, flexible connections between the components and associated duct work, piping and conduit are provided and there is no possibility of consequential damage.

8. Roof Mounted Equipment:

- a. To be installed on a structural frame, seismically rated roof curb, or structural curb frame mechanically connected to the structure. Items shall not be mounted onto sleepers or pads that are not mechanically and rigidly attached to the structure. Restraint must be adequate to resist both seismic and wind forces.
- b. Roof curbs shall be installed directly to building structural steel or concrete roof deck and not to top of steel deck or roofing material.
- c. Exemptions:
 - 1) Curb-mounted mushroom, exhaust and vent fans with curb area less than nine square feet are excluded.

9. Rigid Mounted Equipment:

- a. Anchor floor and wall mounted equipment to the structure as per the stamped seismic certifications / drawings.

- b. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
- c. Suspended equipment shall be restrained using seismic cable restraints, or struts, and hanger rods as per the stamped seismic certifications / drawings.

10. Vibration Isolated Equipment:

- a. Seismic control shall not compromise the performance of noise control, vibration isolation or fire stopping systems.
- b. Equipment supported by vibration-isolation hangers shall be detailed and installed with approximately a 1/8" gap between the isolation hangers and the structure. Isolators at restraint locations must be fitted with uplift limit stops.

B. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.

C. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

D. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES** providing required submittals for component.

E. Installation and adjustment of all seismic restraints specified in this section shall be accomplished as per the manufacturer's written instructions. Any deviation from the manufacturer's instructions shall be reviewed and approved by the manufacturer.

F. Piping Restraints:

- 1. Comply with requirements in ASCE 7-10 Chapter 13.
- 2. Branch lines may not be used to brace main lines.
- 3. All piping requires restraint unless it meets any of the exemptions listed below.
- 4. Exemptions:
 - a. All high deformability pipe 3" or less in diameter suspended by individual hanger rods where $Ip = 1.0$.
 - b. High deformability pipe or conduit in Seismic Design Category C, 2" or less in diameter suspended by individual hanger rods where $Ip = 1.5$.
 - c. High deformability pipe in Seismic Design Category D, E or F, 1" or less in diameter suspended by individual hanger rods where $Ip = 1.5$.
 - d. All clevis supported pipe runs installed less than 12" from the top of the pipe to the underside of the support point and trapeze supported pipe suspended by hanger rods having a distance less than 12" in length from the underside of the pipe support to the support point of the structure.
 - e. Piping systems, including their supports, designed and constructed in accordance with ASME B31.
 - f. Piping systems, including their supports, designed and constructed in accordance with NFPA, provided they meet the force and displacement requirements of Section 13.3.1 and 13.3.2 (ASCE 7).

- G. Install flexible metal hose loops in piping which crosses building seismic joints, sized for the anticipated amount of movement.
- H. Install flexible piping connectors where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.
- I. Where pipe sizes reduce below dimensions required for seismic, the final restraint shall be installed at the transition location.
- J. Restraint Spacing For Piping: Sizes shown are maximum. Actual spacing determined by calculation.
 - 1. For non-ductile piping (e.g., cast iron, PVC) space transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
 - 2. For piping with hazardous material inside (e.g., natural gas, medical gas) space Transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
 - 3. For pipe risers, restrain the piping at floor penetrations using the same spacing requirements as above.
 - 4. For all other ductile piping see Table "A" below
- K. Seismic Restraint of Ductwork: Seismically restrain per specific code requirements, all ductwork listed below (unless otherwise indicated on the drawings), using seismic cable restraints: (Ductwork not meeting criteria listed below is to be "Exempt")
 - 1. Restrain rectangular ductwork with cross sectional area of 6 square feet or larger. Duct with and an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 2. Restrain round ducts with diameters of 33" or larger. Duct with an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 3. Restrain flat oval ducts the same as rectangular ducts of the same nominal size.
 - 4. Duct must be reinforced at the restraint locations. Reinforcement shall consist of an additional angle on top of the ductwork that is attached to the support hanger rods. Ductwork is to be attached to both upper angle and lower trapeze. Additional reinforcing is not required if duct sections are mechanically fastened together with frame bolts and positively fastened to the duct support suspension system.
 - 5. A group of ducts may be combined in a larger frame so that the combined weights and dimensions of the ducts are less than or equal to the maximum weight and dimensions of the duct for which bracing details are selected.
 - 6. Walls, including gypsum board non-bearing partitions, which have ducts running through them, may replace a typical transverse brace. Provide channel framing around ducts and solid blocking between the duct and frame.
 - 7. If ducts are supported by angles, channels or struts, ducts shall be fastened to it at seismic brace locations in lieu of duct reinforcement.
 - 8. All ductwork weighing more than 17 lb/ft.
 - 9. Exemptions:

a. Duct runs supported at locations by two rods less than 12 inches in length from the structural support to the structural connection to the ductwork. This exemption does not apply to ducts with an importance factor of 1.5.

10. See Table “A” below for restraint spacing.

L. Exemptions do not apply for:

1. Life Safety or High Hazard Components

a. Including gas, fire protection, medical gas, fuel oil and compressed air needed for the continued operation of the facility or whose failure could impair the facility’s continued operation, Occupancy Category IV, IBC-2009 as listed in Section 1.3 B regardless of governing code for HVAC, Plumbing, Electrical piping or equipment. (A partial list is illustrated.) High Hazard is additionally classified as any system handling flammable, combustible or toxic material. Typical systems not excluded are additionally listed below.

2. Piping

a. Fuel oil, gasoline, natural gas, medical gas, steam, compressed air or any piping containing hazardous, flammable, combustible, toxic or corrosive materials. Fire protection standpipe, risers and mains. Fire Sprinkler Branch Lines must be end tied.

3. Duct

a. Smoke evacuation duct or fresh air make up connected to emergency system, emergency generator exhaust, boiler breeching or as used by the fire department on manual override.

4. Equipment

a. Previously excluded non life safety duct mounted systems such as fans, variable air volume boxes, heat exchangers and humidifiers having a weight greater than 75 lbs require independent seismic bracing.

M. Spacing Chart For Suspended Components:

Table “A” Seismic Bracing (Maximum Allowable Spacing Shown- Actual Spacing to Be Determined by Calculation)			
Equipment	On Center Transverse	On Center Longitudinal	Change Of Direction
Duct			
All Sizes	30 Feet	60 Feet	4 Feet
Pipe Threaded, Welded, Soldered Or Grooved			
To 16”	40 Feet	80 Feet	4 Feet
18” – 28”	30 Feet	60 Feet	4 Feet
30” – 40”	20 Feet	60 Feet	4 Feet
42” & Larger	10 Feet	30 Feet	4 Feet

- N. Roof mounted duct is to be installed on sleepers or frames mechanically connected to the building structure. Roof anchors and seismic cables or frames shall be used to resist seismic and wind loading. Wind loading factors shall be determined by the registered design professional.
- O. Where duct sizes reduce below dimensions required for seismic restraint the final restraint shall be installed at the transition location.
- P. Install cables so they do not bend across edges of adjacent equipment or building structure.
- Q. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- R. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- S. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- T. Seismically Rated Beam Clamps are required where welding to or penetrations to steel beams are not approved.
- U. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.6 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

- A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
 - 1. A representative of the vibration isolation system manufacturer shall review the project installation and provide documentation indicating conformance to vibration isolation design intent
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.
 - 1. The installing contractor shall submit a report upon request to the building architect and/or engineer, including the manufacturer's representative's final report, indicating that all seismic restraint material has been properly installed, or steps that are to be taken by the contractor to properly complete the seismic restraint work as per the specifications.

3.8 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust leveling devices as required to distribute loading uniformly on isolators. Shim units as required where leveling devices cannot be used to distribute loading properly.
 - 1. Adjust active height of spring isolators.
- C. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

EQUIPMENT ISOLATION SCHEDULE									
LOCATION	A' CRITICAL (35'-50' SPAN)			B' UPPER STORY (20'-35' SPAN)			C' GRADE		
	ISOLATOR TYPE	MINIMUM DEFLECTION (IN)	BASE TYPE	ISOLATOR TYPE	MINIMUM DEFLECTION (IN)	BASE TYPE	ISOLATOR TYPE	MINIMUM DEFLECTION (IN)	BASE TYPE
EQUIPMENT (1)									
AIR HANDLING UNITS									
FLOOR MOUNTED									
UP TO 15 HP	S3	1.5		S3	0.75		S3	0.75	
20 HP & OVER	S3	2.5	SB1	S3	1.5		S3	0.75	
SUSPENDED									
UP TO 15 HP	H3	1.75		H3	1		H3	1	
20 HP & OVER	H3	2.5	SB1	H3	1.75		H3	1	
HIGH PRESSURE FAN SECTIONS									
UP TO 30 HP	S1	2.5	IB1	S3	1.5	IB1	S3	0.75	IB1
40 HP & OVER	S1	3.5	IB1	S3	2.5	IB1	S3	1.5	IB1
CENTRIFUGAL FANS									
CL. I & II UP TO 54-112" W.D.									
UPT015HP	S3	1.5	SB1	S3	0.75	SB1	S3	0.75	SB1
20-50 HP	S1	2.5	IB1	S3	1.5	IB1	S3	0.75	SB1

Ogden City – Francom Public Safety Center
HVAC Upgrades

VBFA PROJECT 240262

60 HP & OVER CL. I & II 60" W.D. & OVERI ALL CL. III FANS UPT015HP 20-50 H P 60 HP & OVER	S1 S1 S1 S1	3.5 2.5 2.5 3.5	IB1 IB1 IB1 IB1	S1 S3 S1 S1	2.5 1.5 2.5 2.5	IB1 IB1 IB1 IB1	S3 S3 S3 S3	1.5 0.75 1.5 1.5	SB1 IB1 IB1 IB1
AXIAL FLOWFANS FLOOR MTD. UP TO 15 HP 20 HP & OVER SUSPENDED UP TO 15 HP 20 HP & OVER	S3 S1 H3 H3	1.5 3.5 1.75 2.5	SB1 IB1 SB1 SB1	S3 S3 H3 H3	0.75 1.5 1 1.75	SB1	S3 S3 H3 H3	0.75 0.75 1 1.5	
VENT (UTILITY SETS) FLOOR MTD SUSPENDED	S3 H3	1.5 1.75	SB1 SB1	S3 H3	0.75 1		S3 H3	0.75 0.75	
CABINET FANS, FANS SECTIONS FLOOR MTD. UP TO 15 HP 20 HP & OVER SUSPENDED UP TO 15 HP 20 HP & OVER	S3 S1 H3 H3	1.5 2.5 1.75 2.5	IB1 IB1 SB1	S3 S3 H3 H3	0.75 1.5 1 1.75		S3 S3 H3 H3	0.75 0.75 0.75 1.75	
PUMPS FLOOR MTD. UP TO 15 HP 7-112 HP & OVER SUSPENDED INLINE	S3 S3 H3	0.75 1.5 1.75	IB1 IB1	S3 S3 H3	0.75 1.5 1.75	IB1 IB1	SRVD S3 H3	0.4 0.75 1	IB1 IB1
REFRIGERATION UNITS RECIPROCATING COMPRESSORS RECIPROCATING COND. UNITS & CHILLERS HERMETIC CENTRIFUGALS OPEN CENTRIFUGALS ABSORPTION MACHINES	S1 S1 S3 S1 S3	2.5 2.5 2.5 2.5 1.5	IB1 IB1 IB1 IB1	S3 S3 S3 S3 S3	1.5 1.5 1.5 1.5 0.75	IB1 IB1 IB1 IB1	S3 S3 P1 P1 P1	0.75 0.75 0.15 0.15 0.15	IB1
AIR COMPRESSORS TANK TYPE (HORIZONTAL TANK) TANK TYPE (VERTICAL TANK)	S1 S1	2.5 2.5	IB1 IB1	S3 S3	1.5 1.5	IB1	S3 S3	0.75 0.75	
COOLING TOWERS & CLOSED CIRCUIT COOLERS UP TO 500 TONS OVER 500 TONS	S3 S3	2.5 4.5		S3 S3	0.75 2.5		P1 P1	0.15 0.15	
AIR COOLED CONDENSERS UP TO 50 TONS OVER 50 TONS	S3 S3	1.5 2.5		S3 S3	0.75 1.5		P1 P1	0.15 0.15	
ROOFTOP AIR CONDITIONING UNITS REQUIRING WEATHER SEAL UP TO 5000 CFM (12 TON) OVER 5000 CFM (12 TON) OTHER TYPES UP TO 25 TONS OVER 25 TONS	S1 S3 S3 S3	1.5 2.5 1.5 2.5	RC1 RC1	S1 S3 S3 S3	0.75 1.5 1.5 1.5	RC1 RC1			
BOILER (PACKAGE TYPE) ALL SIZES	S3	1.5		S3	0.75		P1	0.15	
ENGINE DRIVEN GENERATORS UP TO 60 HP 75 HP & OVER	S1 S1	2.5 3.5	IB1 IB1	S3 S3	1.5 2.5	IB1 IB1	S3 S3	0.75 0.75	

NOTES:

- 1) Thrust restraints required on all high-pressure fan section, suspended axial-flow fans and on floor-mounted axial fans operating at 3.0" S.P. or greater.

END OF SECTION 230548

SECTION 230550 - OPERATION AND MAINTENANCE OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. All pertinent sections of Division 21, 22, & 23 Mechanical General Requirements, are part of the work of this Section. Division 1 is part of this and all other sections of these specifications.
 - 1. Testing and Balancing is specified in section 230594.
 - 2. Training and Instructions to Owner's Representative is specified in section 230100.

1.2 SCOPE OF WORK

- A. Submission of Operating and Maintenance Manuals complete with Balancing reports. (Coordinate with Division 1).
- B. Coordination of work required for system commissioning.
- C. **Provide a hard copy and an electronic copy on CD of the O and M manual fully searchable in PDF format.**

1.3 SUBMITTALS

- A. Submit product data in accordance with Division 1 and Section 230100. Submit the following:
 - 1. Sample of O and M manual outline.
 - 2. Hard copy and an electronic copy on CD of the O and M manual fully searchable in PDF format. Both the hard copy and the electronic copy are to be fully indexed. The electronic copy shall also have a linked index.

PART 2 - PRODUCTS

2.1 O & M MANUALS

- A. The operating and maintenance manuals shall be as follows:
 - 1. Binders shall be red buckram with easy-view metal for size 8-1/2 x 11-inch sheets, with capacity expandable from 2 inches to 3-1/2 inches as required for the project. Construction shall be rivet-through with library corners. No. 12 backbone and lining shall be the same material as the cover. The front cover and backbone shall be foil-stamped in white as follows: (coordinate with **Division 01**)

OPERATING AND MAINTENANCE MANUAL

FOR THE
(INSERT PROJECT NAME)
(INSERT PROJECT COMPLETION YEAR)
VOLUME No. ()

VAN BOERUM & FRANK ASSOCIATES, INC.
MECHANICAL ENGINEER

(INSERT ARCHITECT)

PART 3 - EXECUTION

3.1 OPERATING AND MAINTENANCE MANUALS:

- A. Work under this section shall be performed in concert with the contractor performing the system testing and balancing. Six (6) copies of the manuals shall be furnished to the Architect for distribution to the owner.
- B. The "Start-Up and Operation" section is one of the most important in the manual. Information in this section shall be complete and accurately written and shall be verified with the actual equipment on the job, such as switches, starters, relays, automatic controls, etc. A step-by-step start-up procedure shall be described.
- C. The manuals shall include air and water-balancing reports, system commissioning procedures, start-up tests and reports, equipment and system performance test reports, warranties, and certificates of training given to the owner's representatives.

An index sheet typed on AICO Gold-Line indexes shall be provided in the front of the binder. The manual shall include the following:

SYSTEM DESCRIPTIONS

START-UP PROCEDURE AND OPERATION OF SYSTEM

MAINTENANCE AND LUBRICATION TABLE

OPERATION AND MAINTENANCE BULLETINS

AUTOMATIC TEMPERATURE CONTROL DESCRIPTION OF OPERATION, INTERLOCK AND CONTROL DIAGRAMS, AND CONTROL PANELS.

AIR AND WATER SYSTEM BALANCING REPORTS

EQUIPMENT WARRANTIES AND TRAINING CERTIFICATES

SYSTEM COMMISSIONING REPORTS

EQUIPMENT START-UP CERTIFICATES

END OF SECTION 230550

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:

1. Equipment labels.
2. Danger, Warning and Caution signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Danger tags.
7. Warning tags.
8. Caution tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Minimum Thickness, predrilled or stamped holes for attachment hardware:
 - a. **Brass, 0.032-inch**.
2. Minimum Label Size: Length and width vary for required label content, but not less than **2-1/2 by 3/4 inch**.
3. Minimum Letter Size: **1/4 inch** for name of units if viewing distance is less **than 24 inches**, **1/2 inch** for viewing distances up to **72 inches**, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
4. Fasteners: Stainless-steel;
 - a. **Rivets or self-tapping screws**
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, and having predrilled holes for attachment hardware, **1/16 inch** thick.
2. Letter Color:
 - a. **Black**.
3. Background Color:
 - a. **White**.
4. Maximum Temperature: Able to withstand temperatures up to **160 deg F**.
5. Minimum Label Size: Length and width vary for required label content, but not less than **2-1/2 by 3/4 inch**.
6. Minimum Letter Size: **1/4 inch** for name of units if viewing distance is less than **24 inches**, **1/2 inch** for viewing distances up to **72 inches**, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel;
 - a. **Rivets or self-tapping screws**
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 DANGER, WARNING AND CAUTION SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, having predrilled holes for attachment hardware; **1/16 inch** thick.
- B. Danger signs, colors:
 - 1. Letter Color:
 - a. **White.**
 - 2. Background Color:
 - a. **Red.**
- C. Warning signs, colors:
 - 1. Letter Color:
 - a. **Black.**
 - 2. Background Color:
 - a. **Orange.**
- D. Caution signs, colors:
 - 1. Letter Color:
 - a. **Black.**
 - 2. Background Color:
 - a. **Yellow.**
- E. Maximum Temperature: Able to withstand temperatures up to **160 deg F.**
- F. Minimum Label Size: Length and width vary for required label content, but not less **than 2-1/2 by 3/4 inch.**
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- H. Fasteners: Stainless-steel;
 - 1. Rivets or self-tapping screws
 - 2. Rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to **partially cover** circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

2.4 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of **1-1/4 inches** for ducts; and minimum letter height of **3/4 inch** for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material:
 - a. **Aluminum**.
2. Stencil Paint:
 - a. Exterior, gloss, **alkyd enamel** black unless otherwise indicated.
 - b. Paint may be in pressurized spray-can form.
3. Identification Paint:
 - a. Exterior, **alkyd enamel** in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material, predrilled or stamped holes for attachment hardware, minimum thickness:
 - a. **Brass, 0.032-inch**
2. Fasteners: Brass;
 - a. **Wire-link or beaded chain; or S-hook**

B. Valve Schedules:

1. For each piping system, on **8-1/2-by-11-inch** bond paper, tabulate:
 - a. Valve number.
 - b. Piping system.
 - c. System abbreviation (as shown on valve tag).
 - d. Location of valve (room or space).
 - e. Normal-operating position (open, closed, or modulating).
 - f. Variations for identification.
 - g. Mark valves for emergency shutoff and similar special uses.
2. Valve-tag schedule:
 - a. Shall be included in operation and maintenance data.

2.6 DANGER TAGS

A. Danger Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size:
 - a. **3 by 5-1/4 inches minimum**
2. Fasteners:
 - a. **Brass grommet and wire.**
3. Nomenclature: Large-size primary caption such as "DANGER," and "DO NOT OPERATE."
4. Color: Red background with white lettering.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size:
 - a. **3 by 5-1/4 inches minimum**
2. Fasteners:
 - a. **Brass grommet and wire.**
3. Nomenclature: Large-size primary caption such as "WARNING" and "DO NOT OPERATE."
4. Color: Yellow background with black lettering.

2.8 CAUTION TAGS

A. Caution Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size:
 - a. **3 by 5-1/4 inches minimum**
2. Fasteners:
 - a. **Brass grommet and wire.**
3. Nomenclature: Large-size primary caption such as "CAUTION," and "DO NOT OPERATE."
4. Color: Orange background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in **Division 09**.
- B. Stenciled Pipe Label Option:
 - 1. Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option.
 - 2. Install stenciled pipe labels **with painted, color-coded bands or rectangles** on each piping system.
 - a. Identification Paint: Use for contrasting background.
 - b. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of **50 feet** along each run. Reduce intervals to **25 feet** in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule: (See Drawing Schedules)

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.5 WARNING-TAG INSTALLATION

- A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:

1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
2. Balancing Hydronic Piping Systems:
 - a. Variable-flow hydronic systems.
3. Various HVAC Equipment.
 - a. Motors.
 - b. Condensing Units.
 - c. Heat Transfer Coils.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within the following number of days of the Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article;
 1. **30 days.**
- B. Certified TAB reports.

C. Instrument calibration reports, to include the following:

1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by **AABC** or **NEBB**.

1. TAB Field Supervisor: Employee of the TAB contractor and certified by **AABC** or **NEBB** and shall be the same as the TAB Contractor.
2. TAB Technician: Employee of the TAB contractor and who is certified by **AABC** or **NEBB** as a TAB technician and shall be the same as the TAB Contractor.

B. Certify TAB field data reports and perform the following:

1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

C. TAB Report Forms: Use standard TAB contractor's forms approved by:

1. **Architect**.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide **seven** days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on the following distribution systems have been satisfactorily completed:
 1. **Air and water**.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements, **engage one of the following:**

1. Bonneville Test and Balance
2. BTC Service.
3. Certified Test & Balance.
4. Diamond Test & Balance.
5. RS Analysis.
6. Test & Balance Inc.
7. Payson Sheetmetal.
8. QT&B Inc.

3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine:

1. Ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in:
 - a. **Section 233113 "Metal Ducts"**
 2. Verify ceiling plenums and underfloor air plenums used for supply, return or relief air are properly separated from adjacent areas.
 3. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found

in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in this section and:
 - 1. **AABC's "National Standards for Total System Balance"**
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in **inch-pound (IP)**.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 6. Obtain approval from one of the following entities for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance:
 - a. **Architect .**
 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:

1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from the following entity and comply with requirements in Section 232123 "Hydronic Pumps." :
 - 1) **Architect**.
2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated preset settings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.

1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:

1. Determine the balancing station with the highest percentage over indicated flow.
2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.

J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
2. Motor horsepower rating.
3. Motor rpm.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.12 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.
4. Air pressure drop.
5. Refrigerant suction pressure and temperature.

3.13 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: **Plus or minus 10 percent .**
2. Air Outlets and Inlets: **Plus or minus 10 percent .**
3. Heating-Water Flow Rate: **Plus or minus 10 percent .**
4. Cooling-Water Flow Rate: **Plus or minus 10 percent .**

3.14 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare progress reports on the following interval to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors;
 1. **Weekly.**

3.15 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 8. Report date.

9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report.
Number each page in the report.
11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.
6. Balancing stations.
7. Position of balancing devices.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):

- a. Total air flow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- l. Return-air damper position.
- m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

- a. System identification.
- b. Location.
- c. Coil type.
- d. Number of rows.
- e. Fin spacing in fins per inch o.c.
- f. Make and model number.
- g. Face area in sq. ft..
- h. Tube size in NPS.
- i. Tube and fin materials.
- j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

- a. Air flow rate in cfm.
- b. Average face velocity in fpm.
- c. Air pressure drop in inches wg.
- d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
- e. Return-air, wet- and dry-bulb temperatures in deg F.
- f. Entering-air, wet- and dry-bulb temperatures in deg F.
- g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- h. Water flow rate in gpm.
- i. Water pressure differential in feet of head or psig.

- j. Entering-water temperature in deg F.
- k. Leaving-water temperature in deg F.
- l. Refrigerant expansion valve and refrigerant types.
- m. Refrigerant suction pressure in psig.
- n. Refrigerant suction temperature in deg F.
- o. Inlet steam pressure in psig.

G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:

- a. System identification.
- b. Location.
- c. Coil identification.
- d. Capacity in Btu/h.
- e. Number of stages.
- f. Connected volts, phase, and hertz.
- g. Rated amperage.
- h. Air flow rate in cfm.
- i. Face area in sq. ft..
- j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):

- a. Heat output in Btu/h.
- b. Air flow rate in cfm.
- c. Air velocity in fpm.
- d. Entering-air temperature in deg F.
- e. Leaving-air temperature in deg F.
- f. Voltage at each connection.
- g. Amperage for each phase.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

- a. System identification.
- b. Location.
- c. Make and type.
- d. Model number and size.
- e. Manufacturer's serial number.
- f. Arrangement and class.
- g. Sheave make, size in inches, and bore.
- h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.

- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
- g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

- a. Total airflow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Suction static pressure in inches wg.

I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

- a. System and air-handling-unit number.
- b. Location and zone.
- c. Traverse air temperature in deg F.
- d. Duct static pressure in inches wg.
- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated air flow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual air flow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.

J. Air-Terminal-Device Reports:

1. Unit Data:

- a. System and air-handling unit identification.
- b. Location and zone.
- c. Apparatus used for test.
- d. Area served.
- e. Make.
- f. Number from system diagram.
- g. Type and model number.
- h. Size.
- i. Effective area in sq. ft..

2. Test Data (Indicated and Actual Values):

- a. Air flow rate in cfm.
- b. Air velocity in fpm.
- c. Preliminary air flow rate as needed in cfm.
- d. Preliminary velocity as needed in fpm.
- e. Final air flow rate in cfm.

- f. Final velocity in fpm.
- g. Space temperature in deg F.

K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:

- a. System and air-handling-unit identification.
- b. Location and zone.
- c. Room or riser served.
- d. Coil make and size.
- e. Flowmeter type.

2. Test Data (Indicated and Actual Values):

- a. Air flow rate in cfm.
- b. Entering-water temperature in deg F.
- c. Leaving-water temperature in deg F.
- d. Water pressure drop in feet of head or psig.
- e. Entering-air temperature in deg F.
- f. Leaving-air temperature in deg F.

L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:

- a. Unit identification.
- b. Location.
- c. Service.
- d. Make and size.
- e. Model number and serial number.
- f. Water flow rate in gpm.
- g. Water pressure differential in feet of head or psig.
- h. Required net positive suction head in feet of head or psig.
- i. Pump rpm.
- j. Impeller diameter in inches.
- k. Motor make and frame size.
- l. Motor horsepower and rpm.
- m. Voltage at each connection.
- n. Amperage for each phase.
- o. Full-load amperage and service factor.
- p. Seal type.

2. Test Data (Indicated and Actual Values):

- a. Static head in feet of head or psig.
- b. Pump shutoff pressure in feet of head or psig.
- c. Actual impeller size in inches.
- d. Full-open flow rate in gpm.
- e. Full-open pressure in feet of head or psig.

- f. Final discharge pressure in feet of head or psig.
- g. Final suction pressure in feet of head or psig.
- h. Final total pressure in feet of head or psig.
- i. Final water flow rate in gpm.
- j. Voltage at each connection.
- k. Amperage for each phase.

M. Instrument Calibration Reports:

1. Report Data:

- a. Instrument type and make.
- b. Serial number.
- c. Application.
- d. Dates of use.
- e. Dates of calibration.

3.16 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
- 2. Check the following for each system:
 - a. Measure airflow of at least **10** percent of air outlets.
 - b. Measure water flow of at least **5** percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

- 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by:
 - a. **Architect**.
- 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of:
 - a. Architect.
- 3. The following entity shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day:
 - a. **Architect**.
- 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.17 ADDITIONAL TESTS

- A. Within **90 days** of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes refrigerant piping used for Variable Refrigerant Flow (VRF) Heat Recovery Systems applications.
- B. Related Sections:
 1. Section 235738 "Variable Refrigerant Flow (VRF) Heat Recovery Systems".
 2. Section 230719 "HVAC Piping Insulation" for insulation requirements for refrigerant piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 1. Thermostatic expansion valves.
 2. Solenoid valves.
 3. Hot-gas bypass valves.
 4. Filter dryers.
 5. Strainers.
 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 1. Shop Drawing Scale: **1/4 inch equals 1 foot.**

2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING

- A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.
- B. Any piping delivered to job site that is not sealed on both ends will be rejected.

1.9 COORDINATION

- A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: **ASTM B 280, Type ACR.**

- B. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed.
- C. Wrought-Copper Fittings: ASME B16.22.
- D. Wrought-Copper Unions: ASME B16.22.
- E. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- F. Brazing Filler Metals: AWS A5.8.
- G. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch-(180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 REFRIGERANTS

- A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR VARIABLE REFRIGERANT FLOW SYSTEMS

- A. Refrigerant Piping from Outdoor Units to Branch Circuit Controllers
 - 1. Copper Tube: ASTM B 280, Type ACR.
- B. Refrigerant Piping from Branch Circuit Controllers to Indoor Units
 - 1. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels if valves or equipment requiring maintenance is concealed behind finished surfaces.
- L. Install refrigerant piping in protective conduit where installed belowground.
- M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- N. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- O. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- P. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- Q. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors.
- S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing, to prevent scale formation.
 1. Dry nitrogen must be flowing through copper tube during all brazing operations to prevent the formation of copper oxides. Failure to do so will require all piping installed to that point be removed and replaced.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).

7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).

D. Support multifloor vertical runs at least at each floor.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300

SECTION 232600 – CONDENSATE DRAIN PIPING

PART 1 - GENERAL

1.01 SUMMARY

- A. Includes But Not Limited To:
 - 1. Furnish and install condensate drain piping as described in Contract Documents.
- B. Related Sections:
 - 1. Section 23 0501: Common HVAC Requirements

1.02 REFERENCES

A. American Society For Testing And Materials:

1. ASTM B 88-03, 'Standard Specification for Seamless Copper Water Tube.'

PART 2 - PRODUCTS

2.01 MATERIALS

A. Condensate Drains:

1. Schedule 40 PVC for condensate drains from cooling coils.
2. Type M copper meeting requirements of ASTM B 88 or Schedule 40 PVC for condensate drains from air handling units, fan coil units, and furnace coils.
3. 3 inch 75 mm deep seal, vented water trap adjacent to cooling coil connection.
4. Exterior And Interior Lines: Type M copper meeting requirements of ASTM B 88.
5. Interior Lines Only: Schedule 40 PVC.
6. Insulate all condensate lines with 1" Armaflex.

2.02 MANUFACTURED UNITS

A. Condensate Pump:

1. Rated at 225 gph at 15 feet 4 500 mm total head. Complete with one gallon 3.8 liter polystyrene tank with pump and automatic float control. 1/5 hp, 120 V, one phase, 60 Hertz.
2. Condensate piping shall be Type M copper or Schedule 40 PVC.
3. Category Four Approved Products. See Section 01 6000 for definitions of Categories.

- a. No. CU551UL by Beckett Corp, Irving, TX www.beckettpumps.com.
- b. No. VCL45S by Little Giant Pump Co, Oklahoma City, OK www.lgpc.com.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Condensate Drains:

1. Support piping and protect from damage.
2. Do not combine PVC condensate drain piping from furnace combustion chamber with copper condensate drain piping from cooling coil.

END OF SECTION 235758

SECTION 235758 - VARIABLE REFRIGERANT FLOW (VRF) HEAT RECOVERY SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:

1. Installing contractor qualification and Pre-Bid approval requirements;
2. Outdoor Units; Air-Source Heat Recovery;
3. Refrigerant Distribution Boxes (RDB's);
4. Indoor Units:
 - a. Wall Mounted Units, Indoors;
5. Controls.

- B. Related Sections:

1. Section 23 0548 "Vibration and Seismic Control".
2. Section 23 2301 "Refrigerant Piping".
3. Section 23 3113 "Metal Ducts"
4. Section 23 3300 "Air Duct Accessories."

1.3 SYSTEM DESCRIPTION

- A. The variable capacity, heat recovery system shall consist of an outdoor unit, refrigerant distribution boxes, multiple indoor units, and DDC (Direct Digital Controls). Each indoor unit or groups of indoor units shall be capable of operating in any mode independently of other indoor units or groups. System shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation. Each indoor unit or group of indoor units shall be independently controlled and capable of changing mode automatically when zone temperature is 1 degree F lower or higher than set point for ten minutes.

1.4 PRE-BID SUBMITALS

- A. To Bid this project, a Contractor must have prior approval from the Engineer.
- B. Contractor Qualifications: Approved installing contractors must be factory trained and certified. Submit the following information to the Engineer five (5) business day before the Bid date:

1. VRF Manufacturer's Training Certification.
2. List of five (5) projects of similar scope and design performance as this project. For each previous project provide: size of project (square feet); capacity of the installed VRF system (tons); VRF equipment manufacturer; type and quantity of indoor units; and control system used.

1.5 SUBMITTALS

- A. Piping/Control Schematics: All manufacturers shall submit full piping, and control schematics with performances and capacities de-rated based on the project elevation; design temperature and humidity; defrost mode; actual piping lengths and project heights.
- B. Factory-authorized Service Representative: Submit Factory-authorized Service Representative's qualifications including documentation of manufacturer's service certification and previous experience on projects of similar scope and magnitude. The contractor is not assumed to be qualified as the factory-authorized service representative. The proposed Factory-authorized Service Representative shall submit the following information for approval in Submittal process:
 1. VRF Manufacturer's Training Certification.
 2. List of five (5) projects of similar scope and design performance as this project. For each previous project provide: size of project (square feet); capacity of the installed VRF system (tons); VRF equipment manufacturer; type and quantity of indoor units; and control system used.
- C. Technician Certification: Provide copies of Section 608 Certificates for all technicians performing installation, service, maintenance or repair of the VRF Heat Recovery System.
- D. Product Data: For each type of product indicated. Include de-rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics based on the project elevation; design temperature and humidity; defrost mode; actual piping lengths and project heights.
- E. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Support locations, type and weight.
 3. Field measurements.
 4. Wiring Diagrams: For power, signal, and control wiring.
- F. Seismic Qualification Certificates: For interior and exterior units, accessories, and components, from manufacturer:
 1. Basis for Certification: Indicate whether "Withstand" certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify the 3-dimensional location of center of gravity and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

G. Alternate VRF Manufacturer: The basis of design of the VRF Heat Recovery System is Daikin.

1. Any and all additional material, labor, and engineering cost required to provide a complete and working installation with an Alternate VRF Manufacturer shall be incurred by the contractor.
2. Submit a complete Design Package for the Alternate Equipment including the following:
 - a. Mechanical, plumbing (including condensate drains), electrical and control drawings with thermostatic zoning equivalent to the basis of design.
 - b. Product data in a schedule format with full details of equipment with equivalent capacities, outlet velocities, static pressures, weights, sound power characteristics, motor requirements, and electrical requirements. All product data shall be de-rated based on the Project elevation; design temperatures and humidity; defrost mode; actual piping lengths and project heights.
 - c. Project plans in electronic format (.dwg) will be available to the alternate manufacturer for preparation of mechanical, plumbing, electrical and control drawings.

H. Finish and Color Samples: For units with factory-applied color finishes not in concealed spaces.

I. Warranty: Sample of special warranty.

J. Seismic Performance: VRF indoor and outdoor units, accessories, and components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term “withstand” means the unit will remain in place without separation of any parts from the device when subjected to seismic forces specified.
2. Submit manufacturer’s certification that the equipment is seismically qualified by:
 - a. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - b. Testing by a nationally recognized testing standard procedure such ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - c. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.

1.6 CLOSEOUT SUBMITTALS

A. Field quality-control reports prepared by the factory authorized Service Representative, as outlined in Section 3 of this specification, including the following:

1. Pre-Construction meeting minutes;
2. Site Observation Reports;

3. Equipment and Controls start-up checklist and commissioning report;
4. Control system Acceptance Letter;
5. Piping Evacuation and Pressure Testing reports.

B. Operation and Maintenance Data: For each piece of equipment to include in emergency, operation, and maintenance manuals.

1.7 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."
- B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided and structural shop drawings.

1.8 QUALITY ASSURANCE

- A. Installing Contractor Qualifications:
 1. An experienced installer who has installed Variable Flow Refrigerant (VRF) Heat Recovery Systems of similar scope and design performance as that indicated for this Project. The Engineer requires evidence to support the ability of the contractor to perform work in the scope and volume as specified. A contractor, who cannot show such experience, may be found not suitable to perform the work. The following are the approved contractors for this project.
- B. Pre-approved contractors list:
 1. American Chiller Mechanical Service
 2. B2 Air Systems
 3. Central Utah Sheet Metal
 4. Cherrington's Inc.
 5. Commercial Mechanical Service Systems
 6. Gunther's Comfort Air
 7. Harris Mechanical
 8. Hustad
 9. Mechanical Service & Systems, Inc.
 10. Western Sheet Metal Inc.
 11. Utah Engineering Company, Inc.
- C. A contractor not listed in the "PRE-APPROVED CONTRACTORS LIST" must receive prior approval from the Engineer to Bid this project. See Paragraph 1.4 "Pre-Bid Submittals".
- D. Refrigerant piping shall be installed by a Utah State licensed refrigeration contractor with technicians with Section 608 Certification.
- E. The units shall be listed and labeled by UL or ETL. Units shipped to the job site without a UL or ETL label shall be field certified and labeled at no extra cost to the Owner.

1. The terms “listed” and “labeled”: As defined in the National Electrical Code, Article 100.
- F. All wiring shall be in accordance with the current National Electric Code (NEC).
- G. Fabricate and label refrigeration system according to ASHRAE 15 “Safety Standard for Refrigeration System”.
- H. The VFR Heat Recovery System shall meet or exceed the 2010 Federal minimum efficiency requirements and the proposed ASHRAE 90.1 efficiency requirements for VFR systems. Efficiency shall be published in accordance with the DOE alternative test procedure, which is based on the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standards 340/360 and 1230 and ISO Standard 13256-1.

1.9 DELIVERY, STORAGE AND HANDLING

- A. Units shall be shipped, stored and handled according to the manufacturer’s recommendations.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of VRF system that fails in materials or workmanship within specified period.
 1. Labor Warranty Period: One (1) year from date of Substantial Completion.
 2. Parts Warranty Period: Five (5) years from date of Substantial Completion. Installing Contractor shall comply with all the Manufacturer's requirements to obtain the Manufacturer's Addition Parts Warranty including;
 - a. System designed by Manufacturer qualified designer;
 - b. System installed by Manufacturer qualified installing contractor;
 - c. Submit to Manufacturer complete and approved Commissioning Report.
 3. Compressor Warranty Period: Five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 VARIABLE REFRIGERANT FLOW (VRF); HEAT RECOVERY SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Daikin Applied;
 2. LG;
 3. Mitsubishi.

2.2 OUTDOOR UNITS; AIR-SOURCE HEAT RECOVERY

A. General: Each outdoor unit module shall be completely factory assembled, piped and wired and run tested at the factory.

1. Insulate refrigerant lines from the Outdoor Unit to the Refrigerant Distribution Boxes (RDB) per the manufacturer's recommendations.
2. Comply with manufacturer's recommendations for quantities and connections of Outdoor Units to the RDB's and Indoor Units
3. The following safety devices shall be installed on the Outdoor Units: high pressure sensor and switch; control circuit fuses, crankcase heaters, fusible plug; high pressure switch; overload relay; inverter overload protection and recycle timers; thermal protection for compressors and fan motors.
4. Comply with the manufacturer's requirements maximum height difference and total refrigerant tubing length between Outdoor Unit and the RDB's/Indoor Units. Any additional engineering, labor or materials required by Alternate Manufacturer to comply with project requirements shall be incurred by the contractor.
5. The Outdoor Unit shall be capable of operating in heating mode or cooling mode down to the design temperatures indicated in the equipment schedules. If an Alternate Manufacturer is selected, any additional engineering, material and labor cost to meet scheduled low ambient operating condition and performance shall be incurred by the contractor.
6. The outdoor unit shall have an oil control system to ensure adequate oil volume in the compressor is maintained at design ambient operating temperatures indicated in the equipment schedules.
8. Performance of the VRF manufacturer's chosen defrost method shall be included in the system capacity de-rating calculation.
9. The system shall be capable of continuous operation when an individual indoor unit is being service or power an indoor unit is disconnected.

A. Unit Cabinet:

1. Exterior finish: Shall have passed ASTM B 117-90 Salt Spray Resistance Test, minimum 1,500 hours; ASTM D 2794-90 Impact Test, 160 pounds; ASTM D 2247-87 Humidity Resistance Test, minimum 1,500 hour test with maximum blister 1/16-inch.

B. Fan:

1. Each outdoor unit module shall be furnished with one or more direct drive, variable speed propeller type fan(s). The fan external static pressure shall be as indicated in the equipment schedules.
2. All fan motors shall have thermal and over-load protection; and permanently lubricated bearings.
3. Outdoor Unit condenser fan noise shall be included in the Unit sound level calculation and measurement.
4. Provide fan guard that complies with ELT requirements.
5. The Outdoor Unit shall have vertical discharge airflow.

C. Refrigerant

1. System Refrigerant: ASHRAE 34, R410A (Pentafluoroethane/Difluoromethane).
2. System Lubricant: Polyolester (POE) oil compatible with R410A and as recommended by the compressor manufacturer

D. Coil:

1. The outdoor coil shall be of nonferrous construction with aluminum fins on copper tubing.
2. The coil fins shall have a factory applied corrosion resistant finish.
3. The coil shall be protected with an integral metal guard.

E. Compressor:

1. Each Outdoor Unit module shall be equipped with one or more inverter driven hermetic scroll compressor(s).
2. The Outdoor Unit shall have at least one compressor with an inverter to modulate capacity.
3. Each compressor shall be equipped with thermal overload protection, high pressure safety switch and a crank heater.
4. The compressor shall be mounted on spring vibration isolators.

F. Electrical:

1. The Outdoor Unit electrical characteristics (voltage, MCA, MOCP, etc.) shall be as indicated on the equipment schedules. All scheduled product data is de-rated based on the Project elevation; design temperatures and humidity; defrost mode; and piping lengths and heights. If an Alternate Manufacturer is selected, any additional engineering, material and labor cost to meet the scheduled electrical requirements of the alternate VRF system shall be incurred by the contractor.

G. Controls:

1. The Unit shall use controls provided by the manufacturer to perform functions necessary to operate the system.

2.3 REFRIGERANT DISTRIBUTION BOXES

A. General

1. The Refrigerant Distribution Boxes (RDB) are designed by the VRF manufacturer to function within their VRF system and shall allow simultaneous heating and cooling at the Indoor Units.
2. The RDB's shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory.

B. RDB Cabinet:

1. Casing Material: Fabricated of galvanized steel.
2. RDB connections shall be of the brazed type.
3. The RDB shall be mounted indoors, with access and service clearance provided for each controller as indicated on the plans.

C. Refrigerant valves:

1. Refrigerant connections shall be of the brazed type.
2. Linear electronic expansion valves shall be used to control the variable refrigerant flow.
3. Service shut-off valves shall be field-provided and installed for each incoming and outgoing branch to allow service to any branch circuit controller without field interruption to overall system operation.

D. Future Use

1. Each VRF system shall include at least one (1) unused branch or branch devices for future use. Branches shall be fully installed & wired in central location with capped service shutoff valve & service port.

E. Integral Drain Pan:

1. An Integral drain pan and drain shall be provided, if required. If an Alternate Manufacturer is selected, any additional engineering, material and labor cost to meet the drain requirements of the Alternate VRF system shall be incurred by the contractor.

F. Electrical:

1. The Refrigerant Distribution Box electrical characteristics (voltage, MCA, MOCP, etc.) shall be as indicated on the equipment schedules. All scheduled product data is de-rated based on the Project elevation; design temperatures and humidity; defrost mode; and piping lengths and heights. If an Alternate Manufacturer is selected, any additional engineering, material and labor cost to meet the electrical requirements of the alternate VRF system shall be incurred by the contractor.

H. Controls:

1. The Unit shall use controls provided by the manufacturer to perform functions necessary to operate the system.

2.4 WALL MOUNTED INDOOR UNIT:

A. General:

1. Wall-mounted Indoor Unit.
2. Factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor.
3. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function.
4. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.
5. The mechanical schedules on the Drawings list all sizes, capacities and project design conditions.

B. Cabinet: Plastic with removable panels, discharge drain pans with multi-directional drain connections and refrigerant piping. Separate back plate for secure wall mounting.

- C. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and brazed joints at fittings. Include modulating linear thermal-expansion valve. Comply with ARI 206/110. Coils shall be factory tested to a minimum 450 psig for minimum 300 psig working pressure.
- D. Fan: Direct drive, centrifugal. Permanently lubricated bearings.
- E. Condensate Drain Pan: Fabricate pans and drain connections to comply with ASHRAE 62.1. Provide safety shut-off switch.
- F. Condensate Pump: Minimum 9-inch lift.
- G. Filters: Removable, washable filter.
- H. Electrical:
 - 1. The Wall Unit electrical characteristics (voltage, MCA, MOCP, etc.) shall be as indicated on the equipment schedules. All scheduled product data is de-rated based on the Project elevation; design temperatures and humidity; defrost mode; and piping lengths and heights. If an Alternate Manufacturer is selected, any additional engineering, material and labor cost to meet the electrical requirements of the alternate VRF system shall be incurred by the contractor.
- I. Controls
 - 1. This unit shall use controls provided by the manufacturer to perform functions necessary to operate the system.

2.14 CONTROLS

- A. The control system shall consist of:
 - 1. Low voltage communication network;
 - 2. Integrated unitary controllers with on-board communications at each Indoor and Outdoor Unit and the RDB's;
 - 3. Centralized controller;
 - 4. Remote controllers (thermostats) for location in each thermostatic zone;
- B. Control System Installation:
 - 1. The Installing Contractor shall install:
 - a. All control, control components and control wiring.
- C. System controls and control components shall be installed in accordance with manufacturer's written instructions and applicable Division 26 Sections in this Specification.
 - 1. "Control Wiring" is defined as: wiring, cabling, conduit and miscellaneous materials as required for mounting and connecting electrical or electronic control devices.
 - 2. All exposed wiring, low voltage and line voltage, shall be run in conduit.

3. Low voltage and line voltage wiring shall be run in separate conduits.
4. Concealed but accessible wire, except in mechanical rooms, shall be UL plenum rated cable approved by local building code.
5. All controllers, relays, transducers, etc. shall be located in lockable NEMA 1 enclosures.

D. Control System Interface:

1. Touch Screen PC connected to centralized controller via the closed Local Area Network.;

E. System operators shall be able to perform all system functions through the touch-screen PC interface.

F. Control software shall include:

1. Optimal start and night setback functions.
2. Scheduling functions (daily, weekly, seasonal) for all equipment for On/Off, temperature, fan speed, mode, status and function.
3. Alarms, history and trouble logs with email generation for remote alarm annunciation.
4. Control of remote equipment such as ERV ventilation equipment, exhaust fans, occupant card access, and lighting control.
5. Maintenance diagnostics.

G. Control System Startup and Commissioning shall be performed by the Factory-authorized Service Representative and shall include:

1. Exercise of all control software to demonstrate proper function of all equipment.
2. Functional point to point end testing, such that:
 - a. All output channels shall be commanded (on/off, stop/start, adjust, etc.) and operation verified;
 - b. All analog input channels shall be verified for proper operation;
 - c. All digital input channels shall be verified by changing the state of the field device and observing the appropriate change of displayed value;
 - d. If a point should fail testing, perform necessary repair action and retest failed point and all interlocking points;
 - e. Automatic control operation shall be verified by introducing an error into the system and observing the proper corrective system response;
 - f. Time and set point schedules shall be verified by changing the schedule and observing the correct response on the controlled outputs.
3. System Acceptance:
 - a. Submit a letter to the Architect, certifying that all controls and software have been exercised to demonstrate proper equipment operation, requesting System Acceptance.
 - b. When field tests procedures have been demonstrated to the Owner's representative, the system will be accepted. The warranty period will start at this time.

H. Software Licenses

1. Fully functional licenses for all software necessary to support the control function including any and all renewals necessary for five (5) years.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install VRF system components per the manufacturer's written instructions and requirements.
- B. Equipment Mounting:
 1. Install ground mounted Outdoor Units on cast-in-place concrete equipment bases. Concrete equipment bases shall comply with overall size, thickness, and edge distance for anchor bolts required in Section 230548 "Vibration and Seismic Controls" Submittal.
 2. Equipment Bases: Comply with requirements specified in Section 033053 "Miscellaneous Cast-in-Place Concrete".
 3. Install all equipment level and plumb.
 6. Suspended Units: Suspend and brace units from structural-steel support frame using threaded steel rods and spring hangers.
 7. Vibration Isolation and Seismic Control: Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
- D. Filters: Do not operate fan systems until filters are in place. At Substantial Completion replace temporary filters used during construction and testing, with new, clean filters.
- E. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. Where piping is installed adjacent to Outdoor Units, Indoor Units and Refrigerant Distribution Boxes allow space for service and maintenance of unit.

3.3 CONNECTIONS

- A. Condensate Drain Lines: Connect condensate drain lines to indirect wastes (floor drains, janitor sinks, etc.) with air gaps as indicated on the Drawings.
- B. Refrigerant Piping:
 - 1. Comply with requirements for refrigerant piping materials, brazing and pipe support as specified in Section 23 2301 "Refrigerant Piping".
 - 2. Drawings indicate general arrangement of piping, fittings, and specialties. Arrange installation of units and piping to provide manufacturer's required access space around VRF units for service and maintenance.
- B. Duct Connections: Duct installation requirements are specified in Division 23 Section "Metal Ducts". Connect supply and return ducts to Indoor Units with flexible duct connectors. Flexible duct connectors are specified in Division 23 Section "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. The credentials of the factory-authorized service representative shall be submitted with the submittals for approval. The contractor is not assumed to be qualified as the factory-authorized service representative unless he can provide adequate credentials. The following field-observations shall be conducted by the factory-authorized service representative.
 - 1. Pre-construction Meeting.
 - 2. Minimum two (2) Site Observations during installation of the VRF systems.
 - 3. Evacuation and Pressure Testing Observation.
 - 4. Control Start-up.
 - 5. Equipment and System Start-up.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5 Chapter VI.
 - 2. Leak Test: After installation, charge system with oxygen-free nitrogen (OFN) and pressure test refrigerant lines as follows:
 - a. Pressure Test: 600 psi, hold for 24-hours;
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials and retest until satisfactory results are achieved.
 - 3. Triple Evacuation:
 - 1) Use Micron (micrometers of Hg.) Test gauge with certified calibration, using system manifold gauges are not acceptable.
 - 2) Install core in filter-dryers after leak test but before evacuation.

- 3) Evacuate the refrigerant piping system to 4,000 microns from both service valves; break vacuum with OFN into the discharge service valve to 0 psi.
- 4) Evacuate the refrigerant piping system to 1,500 microns from both service valves; break vacuum with OFN into the discharge service valve to 0 psi.
- 5) Evacuate the refrigerant piping system to 500 microns from both service valves for 1-hour minimum.
- 6) Conduit a Vacuum Rise Test for minimum of 30 minutes.
- 7) Break vacuum with refrigerant gas, allowing pressure to build to 2 psig.
- 8) Charge system with new filter-dryer core in the charging line.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare written report of findings and recommended corrective actions signed by the factory-authorized service representative. Submit written report to Architect along with copies of completed installation and setup checklist.

3.5 STARTUP SERVICE

A. Engage a Factory-authorized Service Representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Prepare written report of findings and recommended corrective actions signed by the factory-authorized service representative. Submit written report to Architect along with copies of completed startup checklist.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel on procedures and schedules related to startup and shutdown; operation; troubleshooting; servicing; and preventive maintenance. Training for Owner's maintenance personnel on site shall be a minimum of eight (8) hours.

1. Review data in the Operation and Maintenance Manual. Refer to Division 1 Section "Contract Closeout".
2. Schedule training with Owner through the Architect with at least 7-days notice.

END OF SECTION 23 5758