
1497 West 40 South
Lindon, Utah - 84042
Phone (801) 225-5711

840 West 1700 South #10
Salt Lake City, Utah - 84104
Phone (801) 787-9138

1596 W. 2650 S. #108
Ogden, Utah - 84401
Phone (801) 399-9516

**Geotechnical Study
Quincy Infill Project
2325 Quincy Avenue
Ogden, Utah**

Project No. 219060

October 1, 2021

Prepared For:

Ogden City Community Development
Attention: Mr. Jeremy Smith
2549 Washington Boulevard, Suite 120
Ogden, UT 84401

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	PROPOSED CONSTRUCTION	2
4.0	GENERAL SITE DESCRIPTION	2
4.1	Site Description	2
4.2	Geologic Setting	2
5.0	SUBSURFACE EXPLORATION	3
5.1	Soil Exploration	3
6.0	LABORATORY TESTING	3
7.0	SUBSURFACE CONDITIONS	4
7.1	Soil Types	4
7.2	Collapsible Soils	4
7.3	Groundwater Conditions	4
8.0	SITE GRADING	4
8.1	General Site Grading	4
8.2	Temporary Excavations	5
8.3	Fill Material Composition	5
8.4	Fill Placement and Compaction	6
8.5	Stabilization Recommendations	7
9.0	SEISMIC AND GEOLOGIC CONSIDERATIONS	8
9.1	Seismic Design	8
9.2	Faulting	8
9.3	Liquefaction Potential	8
10.0	FOUNDATIONS	9
10.1	General	9
10.2	Strip/Spread Footings	9
10.3	Estimated Settlements	10
10.4	Lateral Earth Pressures	10
11.0	FLOOR SLABS AND FLATWORK	11
12.0	DRAINAGE	12
12.1	Surface Drainage	12
12.2	Subsurface Drainage	13
13.0	PAVEMENT RECOMMENDATIONS	13
14.0	GENERAL CONDITIONS	14

ATTACHED FIGURES

No. 1 VICINITY MAP
No. 2 SITE PLAN SHOWING LOCATION OF TEST PITS
Nos. 3 – 5 TEST PIT LOGS
No. 6 LEGEND
Nos. 7 – 8 CONSOLIDATION-SWELL TEST

APPENDIX A

Timpview Analytical Labs
OSHPD-U.S. Seismic Design Maps

1.0 SUMMARY

This entire report presents the results of Earthtec Engineering's completed geotechnical study for the Quincy Infill Project in Ogden, Utah. This summary provides a general synopsis of our recommendations and findings. Details of our findings, conclusions, and recommendations are provided within the body of this report.

- The native clay and silt soils have a negligible potential for collapse (settlement) and a slight potential for compression under increased moisture contents and anticipated load conditions. (see Section 6)
- Conventional strip and spread footings may be used to support the structures, with foundations placed entirely on firm, undisturbed, uniform native soils (i.e. completely on silt soils, or completely on sand soils, etc.) beneath untested fill material, or entirely on a minimum of 12 inches of properly placed, compacted, and tested structural fill extending to undisturbed native soils for structural loads up to 4,000 pounds per linear foot for bearing walls and up to 30,000 pounds for column loads. If loads exceed these see Section 10 for further recommendations.

Based on the results of our field exploration, laboratory testing, and engineering analyses, it is our opinion that the subject site may be suitable for the proposed development, provided the recommendations presented in this report are followed and implemented during design and construction.

Failure to consult with Earthtec Engineering (Earthtec) regarding any changes made during design and/or construction of the project from those discussed herein relieves Earthtec from any liability arising from changed conditions at the site. We also strongly recommend that Earthtec observes the building excavations to verify the adequacy of our recommendations presented herein, and that Earthtec performs materials testing and special inspections for this project to provide continuity during construction.

2.0 INTRODUCTION

The project is located at approximately 2325 Quincy Avenue in Ogden, Utah. The general location of the site is shown on Figure No. 1, *Vicinity Map* and Figure No. 2, *Site Plan Showing Location of Test Pits*, at the end of this report. The purposes of this study are to evaluate the subsurface soil conditions at the site, assess the engineering characteristics of the subsurface soils, and provide geotechnical recommendations for general site grading and the design and construction of foundations, concrete floor slabs, miscellaneous concrete flatwork, and asphalt paved residential streets.

The scope of work completed for this study included field reconnaissance, subsurface exploration, field and laboratory soil testing, geotechnical engineering analysis, and the preparation of this report.

3.0 PROPOSED CONSTRUCTION

We understand that the proposed project, as described to us by Mr. Jeremy Smith, consists of developing the approximately 1½-acre existing parcel with a new residential subdivision. The proposed structures will consist of conventionally framed, one- to two-story houses with basements. We have based our recommendations in this report that the anticipated foundation loads for the proposed structures will not exceed 4,000 pounds per linear foot for bearing walls, 30,000 pounds for column loads, and 100 pounds per square foot for floor slabs. If structural loads will be greater Earthtec should be notified so that we may review our recommendations and make modifications, if necessary.

In addition to the construction described above, we anticipate that utilities will be installed to service the proposed buildings, exterior concrete flatwork will be placed in the form of curb, gutter, sidewalks, driveways, and asphalt paved residential streets will be constructed.

4.0 GENERAL SITE DESCRIPTION

4.1 Site Description

At the time of our subsurface exploration the site was a partially developed parcel vegetated with grasses and trees. At the time of our investigation, one house remained on the property of the several along Quincy Avenue that once existed. Historical aerial photographs show that the field behind the extant house once contained a warehouse of unknown use which was removed in 2010. Utilities that once serviced the structure remained on site near the north and south boundaries. The ground surface appears to be relatively flat, we anticipate less than 3 feet of cut and fill may be required for site grading. The lot was bounded on the north and south by residential development, on the east by Quincy Avenue, and on the west by Fellowship Manor Apartments.

4.2 Geologic Setting

The subject property is located near the eastern shore of the Great Salt Lake in the valley between the Great Salt Lake Basin on the west and the Wasatch Mountain Range on the east. The valley and Great Salt Lake Basin were formed by extensional tectonic processes during the Tertiary and Quaternary geologic time periods. The valleys and lake basin to the west of the Wasatch Range have been partially filled with several thousand feet of lake (lacustrine) sediment during Lake Bonneville time, and post-Bonneville (Holocene) deltaic, lacustrine, alluvial, and colluvial deposits. The Wasatch Mountains to the east of the subject property are comprised of the early Proterozoic Farmington Canyon Complex consisting primarily of schist and gneiss. The surficial geology of the Ogden 7.5' Quadrangle has been mapped by Yonkee and Lowe, 2004¹. The surficial geology at the location of the subject site and adjacent properties is mapped as "Deltaic deposits, Bonneville regressive" (Map Unit Qd₃) dated to the Pleistocene. These soil or deposits

¹ Yonkee, A., and Lowe, M., GEOLOGIC MAP OF THE OGDEN 7.5' QUADRANGLE, WEBER AND DAVIS COUNTIES, UTAH, 2004

are generally described in the referenced mapping as "...rhythmically interlayered, gently inclined, fine to medium sand and silt, and topset beds of clast-supported, moderately well-sorted, pebble and cobble gravel and gravelly sand." However, a geologic hazard study was not performed for the subject site during this study.

5.0 SUBSURFACE EXPLORATION

5.1 Soil Exploration

Under the direction of a qualified member of our geotechnical staff, subsurface explorations were conducted at the site on September 14, 2021 by the excavation of three (3) test pits to depths of 9 to 10 feet below the existing ground surface using a track-mounted mini excavator. The approximate locations of the test pits are shown on Figure No. 2, *Site Plan Showing Location of Test Pits*. Graphical representations and detailed descriptions of the soils encountered are shown on Figure Nos. 3 through 5, *Test Pit Log* at the end of this report. The stratification lines shown on the logs represent the approximate boundary between soil units; the actual transition may be gradual. Due to potential natural variations inherent in soil deposits, care should be taken in interpolating between and extrapolating beyond exploration points. A key to the symbols and terms on the logs is presented on Figure No. 6, *Legend*.

Disturbed bag samples and relatively undisturbed block samples were collected at various depths in each test pit.

The soil samples collected were classified by visual examination in the field following the guidelines of the Unified Soil Classification System (USCS). The samples were transported to our Lindon, Utah laboratory where they will be retained for 30 days following the date of this report and then discarded, unless a written request for additional holding time is received prior to the 30-day limit.

6.0 LABORATORY TESTING

Representative soil samples collected during our field exploration were tested in the laboratory to assess pertinent engineering properties and to aid in refining field classifications, if needed. Tests performed included natural moisture contents, dry density tests, liquid and plastic limits determinations, mechanical (partial) gradation analyses, and one-dimensional consolidation tests. The laboratory test results are also included on the attached *Test Pit Logs* at the respective sample depths, and on Figure Nos. 7 and 8, *Consolidation-Swell Test*.

As part of the consolidation test procedure, water was added to the samples to assess moisture sensitivity when the samples were loaded to an equivalent pressure of approximately 1,000 psf. The native clay and silt soils have a negligible potential for collapse (settlement) and a slight potential for compressibility under increased moisture contents and anticipated load conditions.

A water-soluble sulfate test was performed on a representative sample obtained during our field

exploration which indicated a value of less than 10 parts per million. Based on this result, the risk of sulfate attack to concrete appears to be "negligible" according to American Concrete Institute standards. Therefore, there are no restrictions on the type of Portland cement that may be used for concrete in contact with on-site soils. The results can be found in Appendix A.

7.0 SUBSURFACE CONDITIONS

7.1 Soil Types

On the surface of the site, we encountered fill which is estimated to extend about 2½ to 5 feet in depth at the test pit locations. Below the fill we encountered layers of silt, sand, and clay extending to depths of 9 to 10 feet below the existing ground surface. Graphical representations and detailed descriptions of the soils encountered are shown on Figure Nos. 3 through 5, *Test Pit Log* at the end of this report. Based on our experience and observations during field exploration, the clay and silt soils visually ranged from medium stiff to very stiff in consistency and the sand soils visually had a relative density of loose.

It should be considered that a limited number of test pits were used during the course of our subsurface exploration. Topsoil and fill material composition and contacts are difficult to determine from test pit sampling. Variation in fill depths may occur at the site.

7.2 Collapsible Soils

Collapsible soils are typically characterized by a pinhole structure and relatively low unit weights. Foundations, floor slabs, and roadways supported on these soils may be susceptible to large settlements and structural distress when wetted. Significantly collapsible soils were not encountered in our explorations.

7.3 Groundwater Conditions

Groundwater was encountered at depths of approximately 7½ to 9½ feet below the existing ground surface. In addition, we observed oxidation and calcite cementation in the soils, a possible indicator of past water or seepage levels, at a depth of about 2½ feet to 9 below the existing ground surface. Note that groundwater levels will fluctuate in response to the season, precipitation, snow melt, irrigation, and other on and off-site influences. Quantifying these fluctuations would require long term monitoring, which is beyond the scope of this study. The contractor should be prepared to dewater excavations as needed.

8.0 SITE GRADING

8.1 General Site Grading

All surface vegetation and unsuitable soils (such as topsoil, organic soils, undocumented fill, soft,

loose, or disturbed native soils, collapsible, and any other inapt materials) should be removed from below foundations and floor slabs. We encountered fill on the surface of the site. The fill encountered on the site is considered undocumented (untested). The fill (including soil with roots larger than about $\frac{1}{4}$ inch in diameter) should be completely removed, even if found to extend deeper, along with any other unsuitable soils that may be encountered. Over-excavations below footings and slabs also may be needed, as discussed in Section 10.0.

Fill placed over large areas, even if only a few feet in depth, can cause consolidation in the underlying native soils resulting in settlement of the fill. Because the site is relatively flat, we anticipate that less than 3 feet of grading fill will be placed. If more than 3 feet of grading fill will be placed above the existing surface (to raise site grades), Earthtec should be notified so that we may provide additional recommendations, if required. Such recommendations will likely include placing the fill several weeks (or possibly more) prior to construction to allow settlement to occur.

8.2 Temporary Excavations

Temporary excavations that are less than 4 feet in depth and above groundwater should have side slopes no steeper than $\frac{1}{2}H:1V$ (Horizontal:Vertical). Temporary excavations where water is encountered in the upper 4 feet or that extend deeper than 4 feet below site grades should be sloped or braced in accordance with OSHA² requirements for Type C soils.

8.3 Fill Material Composition

Structural fill is defined as imported fill material that will ultimately be subjected to any kind of structural loading, such as those imposed by footings, floor slabs, pavements, etc. Gradation requirements stated below shall be verified in intervals not exceeding 1,000 tons. We recommend that imported structural fill consist of sandy/gravelly soils meeting the following requirements in the table below:

Table 1: Imported Structural Fill Recommendations

Sieve Size/Other	Percent Passing (by weight)
4 inches	100
3/4 inches	70 – 100
No. 4	40 – 80
No. 40	15 – 50
No. 200	0 – 20
Liquid Limit	35 maximum
Plasticity Index	15 maximum

Engineered fill is defined as reworked granular (sands or gravels), native material that will ultimately be subjected to any kind of structural loading, such as those imposed by footings, floor slabs, pavements. Native clay and silt soils are not suitable for use as engineered fill. We recommend that a professional engineer or geologist verify that the engineered fill to be used on

² OSHA Health and Safety Standards, Final Rule, CFR 29, part 1926.

this project meets the requirements. Engineered fill should be clear of all organics, have a maximum particle size of 4 inches, less than 70 percent retained on the $\frac{3}{4}$ -sieve, a maximum Liquid Limit of 35, and a maximum Plasticity Index of 15.

In some situations, particles larger than 4 inches and/or more than 30 percent coarse gravel may be acceptable but would likely make compaction more difficult and/or significantly reduce the possibility of successful compaction testing. Consequently, stricter quality control measures than normally used may be required, such as using thinner lifts and increased or full-time observation of fill placement.

We recommend that utility trenches below any structural load be backfilled using structural fill or engineered fill. Local governments or utility companies required specification for backfill should be followed unless our recommendations stricter.

If native soil is used as fill material, the contractor should be aware that native clay and silt soils (as observed in the explorations) may be time consuming to compact due to potential difficulties in controlling the moisture content needed to obtain optimum compaction and changes proctor values.

If required (i.e. fill in submerged areas), we recommend that free draining granular material (clean sand and/or gravel) meet the following requirements in the table below:

Table 2: Free-Draining Fill Recommendations

Sieve Size/Other	Percent Passing (by weight)
3 inches	100
No. 10	0 – 25
No. 40	0 – 15
No. 200	0 – 5
Plasticity Index	Non-plastic

Three-inch minus washed rock (sometimes called river rock or drain rock) and pea gravel materials usually meet these requirements and may be used as free draining fill. If free draining fill will be placed adjacent to soil containing a significant amount of sand or silt/clay, precautions should be taken to prevent the migration of fine soil into the free draining fill. Such precautions should include either placing a filter fabric between the free draining fill and the adjacent soil material, or using a well-graded, clean filtering material approved by the geotechnical engineer.

8.4 Fill Placement and Compaction

The thickness of each lift should be appropriate for the compaction equipment that is used. We recommend a maximum lift thickness prior to compaction of 4 inches for hand operated equipment, 6 inches for most “trench compactors” and 8 inches for larger rollers, unless it can be demonstrated by in-place density tests that the required compaction can be obtained throughout a thicker lift. The full thickness of each lift of structural fill placed should be compacted to at least the following percentages of the maximum dry density, as determined by ASTM D-1557:

- In landscape and other areas not below structurally loaded areas: 90%
- Less than 5 feet of fill below structurally loaded areas: 95%
- 5 feet or greater of fill below structurally loaded areas: 98%

Generally, placing and compacting fill at moisture contents within ± 2 percent of the optimum moisture content, as determined by ASTM D-1557, will facilitate compaction. Typically, the further the moisture content deviates from optimum the more difficult it will be to achieve the required compaction.

Fill should be tested frequently during placement and we recommend early testing to demonstrate that placement and compaction methods are achieving the required compaction. The contractor is responsible to ensure that fill materials and compaction efforts are consistent so that tested areas are representative of the entire fill.

8.5 Stabilization Recommendations

Near surface layers of silt soils may rut and pump during grading and construction. The likelihood of rutting and/or pumping, and the depth of disturbance, is proportional to the moisture content in the soil, the load applied to the ground surface, and the frequency of the load. Consequently, rutting and pumping can be minimized by avoiding concentrated traffic, minimizing the load applied to the ground surface by using lighter equipment, partially loaded equipment, tracked equipment, by working in dry times of the year, and/or by providing a working surface for equipment.

During grading the soil in any obvious soft spots should be removed and replaced with granular material. If rutting or pumping occurs traffic should be stopped in the area of concern. The soil in rutted areas should be removed and replaced with granular material. In areas where pumping occurs the soil should either be allowed to sit until pore pressures dissipate (several hours to several days) and the soil firms up or be removed and replaced with granular material. Typically, we recommend removal to a minimum depth of 24 inches.

For granular material, we recommend using angular well-graded gravel, such as pit run, or crushed rock with a maximum particle size of four inches. We suggest that the initial lift be approximately 12 inches thick and be compacted with a static roller-type compactor. A finer granular material such as sand, gravelly sand, sandy gravel or road base may also be used. Materials which are more angular and coarse may require thinner lifts in order to achieve compaction. We recommend that the fines content (percent passing the No. 200 sieve) be less than 15%, the liquid limit be less than 35, and the plasticity index be less than 15.

Using a geosynthetic fabric, such as Mirafi 600X or equivalent, may also reduce the amount of material required and avoid mixing of the granular material and the subgrade. If a fabric is used, following removal of disturbed soils and water, the fabric should be placed over the bottom and up the sides of the excavation a minimum of 24 inches. The fabric should be placed in accordance with the manufacturer's recommendations, including proper overlaps. The granular material should then be placed over the fabric in compacted lifts. Again, we suggest that the initial lift be

approximately 12 inches thick and be compacted with a static roller-type compactor.

9.0 SEISMIC AND GEOLOGIC CONSIDERATIONS

9.1 Seismic Design

The State of Utah has adopted the 2015 International Residential Code (IRC) and residential structures should be designed in accordance with the 2015 IRC. The IRC designates this area as a seismic design class D₂.

The site is located at approximately 41.224 degrees latitude and -111.958 degrees longitude from the approximate center of the site. The IRC site value for this property is 1.094g. The design spectral response acceleration parameters are given below.

Table 3: Design Acceleration for Short Period

S _s	F _a	Site Value (S _{Ds})
		2/3 S _s *F _a
1.367g	1.2	1.094g

9.2 Faulting

The subject property is located within the Intermountain Seismic Belt where the potential for active faulting and related earthquakes is present. Based upon published geologic maps³, no active faults traverse through or immediately adjacent to the site and the site is not located within local fault study zones. The nearest mapped fault trace is the Weber Section of the Wasatch Fault located about 1½ miles east of the site.

9.3 Liquefaction Potential

According to current liquefaction maps⁴ for Utah County, the site is located within an area designated as “Low to Moderate” in liquefaction potential. Liquefaction can occur when saturated subsurface soils below groundwater lose their inter-granular strength due to an increase in soil pore water pressures during a dynamic event such as an earthquake. Loose, saturated sands are most susceptible to liquefaction, but some loose, saturated gravels and relatively sensitive silt to low-plasticity silty clay soils can also liquefy during a seismic event. Subsurface soils encountered were composed of saturated silt, clay, and sand soils.

The soils encountered at this project do not appear liquefiable, but the liquefaction susceptibility of underlying soils (deeper than our explorations) is not known and would require deeper explorations to quantify.

³ U.S. Geological Survey, Quaternary Fault and Fold Database of the United States, November 3, 2010.

⁴ Utah Geological Survey, Liquefaction-Potential Map for a Part of Utah County, Utah, Public Information Series 28, August 1994.

10.0 FOUNDATIONS

10.1 General

The foundation recommendations presented in this report are based on the soil conditions encountered during our field exploration, the results of laboratory testing of samples of the native soils, the site grading recommendations presented in this report, and the foundation loading conditions presented in Section 3.0, *Proposed Construction*, of this report. If loading conditions and assumptions related to foundations are significantly different, Earthtec should be notified so that we can re-evaluate our design parameters and estimates (higher loads may cause more settlement), and to provide additional recommendations if necessary.

Conventional strip and spread footings may be used to support the proposed structures after appropriate removals as outlined in Section 8.1. Foundations should not be installed on topsoil, undocumented fill, debris, combination soils, organic soils, frozen soil, or in ponded water. If foundation soils become disturbed during construction, they should be removed or compacted.

10.2 Strip/Spread Footings

We recommend that conventional strip and spread foundations be constructed entirely on firm, undisturbed, uniform native soils (i.e. completely on silt soils, or completely on sand soils, etc.) beneath untested fill material, or entirely on a minimum of 12 inches of properly placed, compacted, and tested structural fill extending to undisturbed native soils for structural loads up to 4,000 pounds per linear foot for bearing walls and up to 30,000 pounds for column loads. If loads exceed 4,000 pounds per linear foot for bearing walls or 30,000 pounds for column loads, please contact Earthtec for further recommendations. For foundation design we recommend the following:

- Footings founded on undisturbed native soils may be designed using a maximum allowable bearing capacity of 1,500 pounds per square foot. Footings founded on a minimum of 12 inches of structural fill extending to undisturbed native soil may be designed using a maximum allowable bearing capacity of 2,000 pounds per square foot. The values for vertical foundation pressure can be increased by one-third for wind and seismic conditions per Section 1806 when used with the Alternative Basic Load Combinations found in Section 1605.3.2 of the 2018 International Building Code.
- Continuous and spot footings should be uniformly loaded and should have a minimum width of 20 and 30 inches, respectively.
- Exterior footings should be placed below frost depth which is determined by local building codes. In general, 30 inches of cover is adequate for most sites; however local code should be verified by the end design professional. Interior footings, not subject to frost (heated structures), should extend at least 18 inches below the lowest adjacent grade.
- Foundation walls and footings should be properly reinforced to resist all vertical and lateral loads and differential settlement.

- The bottom of footing excavations should be compacted with at least 4 passes of an approved non-vibratory roller prior to erection of forms or placement of structural fill to densify soils that may have been loosened during excavation and to identify soft spots. If soft areas are encountered, they should be stabilized as recommended in Section 8.5.
- Footing excavations should be observed by the geotechnical engineer prior to beginning fill placement or footing construction if fill is not required to evaluate whether suitable bearing soils have been exposed and whether excavation bottoms are free of loose or disturbed soils.
- Because of shallow groundwater conditions encountered at the site, we anticipate of structural fill may be required below the proposed structure to provide a firm surface upon which to construct the proposed structure.
- In lieu of traditional structural fill, clean 1- to 2-inch clean gravel may be used in conjunction with a stabilization fabric, such as Mirafi 600X or equivalent, which should be placed between the native soils and the clean gravel (additional recommendations for placing clean gravel and stabilization fabric are given in Section 8.5 of this report).
- Structural fill used below foundations should extend laterally a minimum of 6 inches for every 12 vertical inches of structural fill placed. For example, if 18 inches of structural fill is required to bring the excavation to footing grade, the structural fill should extend laterally a minimum of 9 inches beyond the edge of the footings on both sides.

10.3 Estimated Settlements

If the proposed foundations are properly designed and constructed using the parameters provided above, we estimate that total settlements should not exceed one inch and differential settlements should be one-half of the total settlement over a 25-foot length of continuous foundation, for non-earthquake conditions. Additional settlement could occur during a seismic event due to ground shaking, if more than 3 feet of grading fill is placed above the existing ground surface, if loading conditions are greater than anticipated in Section 2, and/or if foundation soils are allowed to become wetted.

10.4 Lateral Earth Pressures

Below grade walls act as soil retaining structures and should be designed to resist pressures induced by the backfill soils. The lateral pressures imposed on a retaining structure are dependent on the rigidity of the structure and its ability to resist rotation. Most retaining walls that can rotate or move slightly will develop an active lateral earth pressure condition. Structures that are not allowed to rotate or move laterally, such as subgrade basement walls, will develop an at-rest lateral earth pressure condition. Lateral pressures applied to structures may be computed by multiplying the vertical depth of backfill material by the appropriate equivalent fluid density. Any surcharge loads in excess of the soil weight applied to the backfill should be multiplied by the appropriate lateral pressure coefficient and added to the soil pressure. For static conditions the resultant forces are applied at about one-third the wall height (measured from bottom of wall). For seismic conditions, the resultant forces are applied at about two-third times the height of the wall

both measured from the bottom of the wall. The lateral pressures presented in the table below are based on drained, horizontally placed native soils as backfill material using a 28° friction angle and a dry unit weight of 125pcf.

Table 4: Lateral Earth Pressures (Static and Dynamic)

Condition	Case	Lateral Pressure Coefficient	Equivalent Fluid Pressure (pcf)
Active	Static	0.36	45
	Seismic	0.62	77
At-Rest	Static	0.53	66
	Seismic	0.79	99
Passive	Static	2.77	346
	Seismic	3.10	387

*Seismic values combine the static and dynamic values

These pressure values do not include any surcharge and are based on a relatively level ground surface at the top of the wall and drained conditions behind the wall. It is important that water is not allowed to build up (hydrostatic pressures) behind retaining structures. Retaining walls should incorporate drainage behind the walls as appropriate, and surface water should be directed away from the top and bottom of the walls.

Lateral loads are typically resisted by friction between the underlying soil and footing bottoms. Resistance to sliding may incorporate the friction acting along the base of foundations, which may be computed using a coefficient of friction of soils against concrete of 0.30 for native clay and silts, 0.40 for native sands, and 0.55 for native gravels, clean gravel, or structural fill meeting the recommendations presented herein. Concrete or masonry walls shall be selected and constructed in accordance with Section R404 of the 2015 International Residential Code or sections referenced therein. Retaining wall lateral resistance design should further reference Section R404.4 for reference of Safety Factors.

11.0 FLOOR SLABS AND FLATWORK

Due to shallow groundwater encountered at the site, lowest floor slab depths should be limited to 4½ feet below existing site grades. This is intended to provide a minimum of 3 feet of separation between the observed groundwater condition and the bottom of the floor slab.

Concrete floor slabs and exterior flatwork may be supported on undisturbed native soils or on a minimum of 12 inches properly placed, compacted, and tested engineered fill or imported structural fill extending to undisturbed native soils after appropriate removals and grading as outlined in Section 8.1 are completed. We recommend placing a minimum of 4 inches of free-draining fill material (see Section 8.3) beneath floor slabs to facilitate construction, act as a capillary break, and aid in distributing floor loads. For exterior flatwork, we recommend placing a minimum of 4 inches of road-base material. Prior to placing the free-draining fill or road-base materials, the native sub-grade should be proof-rolled to identify soft spots, which should be

stabilized as discussed above in Section 8.5.

For slab design, we recommend using a modulus of sub-grade reaction of 130 pounds per cubic inch. The thickness of slabs supported directly on the ground shall not be less than 3½ inches. A 6-mil polyethylene vapor retarder with joints lapped not less than 6 inches shall be placed between the ground surface and the concrete, as per Section R506 of the 2015 International Residential Code.

To help control normal shrinkage and stress cracking, we recommend that floor slabs have adequate reinforcement for the anticipated floor loads with the reinforcement continuous through interior floor joints, frequent crack control joints, and non-rigid attachment of the slabs to foundation and bearing walls. Special precautions should be taken during placement and curing of all concrete slabs and flatwork. Excessive slump (high water-cement ratios) of the concrete and/or improper finishing and curing procedures used during hot or cold weather conditions may lead to excessive shrinkage, cracking, spalling, or curling of slabs. We recommend all concrete placement and curing operations be performed in accordance with American Concrete Institute (ACI) codes and practices.

12.0 DRAINAGE

12.1 Surface Drainage

As part of good construction practice, precautions should be taken during and after construction to reduce the potential for water to collect near foundation walls. Accordingly, we recommend the following:

- The contractor should take precautions to prevent significant wetting of the soil at the base of the excavation. Such precautions may include: grading to prevent runoff from entering the excavation, excavating during normally dry times of the year, covering the base of the excavation if significant rain or snow is forecast, backfill at the earliest possible date, frame floors and/or the roof at the earliest possible date, other precautions that might become evident during construction.
- Adequate compaction of foundation wall backfill must be provided i.e. a minimum of 90% of ASTM D-1557. Water consolidation methods should not be used.
- The ground surface should be graded to drain away from the building in all directions. We recommend a minimum fall of 8 inches in the first 10 feet.
- Roof runoff should be collected in rain gutters with down spouts designed to discharge well outside of the backfill limits, or at least 10 feet from foundations, whichever is greater.
- Sprinkler nozzles should be aimed away, and all sprinkler components kept at least 5 feet, from foundation walls. A drip irrigation system may be utilized in landscaping areas within 10 feet of foundation walls to minimize water intrusion at foundation backfill. Also, sprinklers

should not be placed at the top or on the face of slopes. Sprinkler systems should be designed with proper drainage and well maintained. Over-watering should be avoided.

- Any additional precautions which may become evident during construction.

12.2 Subsurface Drainage

Groundwater or indicators of past groundwater levels were encountered/observed at depths of 7½ to 9½ feet below the existing ground surface. Due to the presence of shallow groundwater throughout property, basements for residences may be difficult to construct. The depth of basements will depend greatly on-site grading and drainage. Based on current site conditions, basements may be constructed no deeper than 5 feet below existing site grades. Basement depths can be increased if a land drain system is constructed for the subdivision. The depth of the land drain will then control the allowable depth of the basements. Additionally, we recommend that a perimeter foundation drain be utilized for each structure.

Section R405.1 of the 2015 International Residential Code states, “Drains shall be provided around all concrete and masonry foundations that retain earth and enclose habitable or usable spaces located below grade.” Section R310.2.3.2 of the 2015 International Residential Code states, “Window wells shall be designed for proper drainage by connecting to the building’s foundation drainage system.” An exception is allowed when the foundation is installed on well drained ground consisting of Group 1 soils, which include those defined by the Unified Soil Classification System as GW, GP, SW, SP, GM, and SM. The soils observed in the explorations at the depth of foundation consisted primarily of silt (ML) which is not a Group 1 soil.

13.0 PAVEMENT RECOMMENDATIONS

We understand that asphalt paved residential streets will be constructed as part of the project. The native soils encountered beneath the fill during our field exploration were predominantly composed of silts. We estimate that a California Bearing Ratio (CBR) value of 3 is appropriate for these soils. If the fill is left beneath concrete flatwork and pavement areas, increased maintenance costs over time should be anticipated.

We anticipate that the traffic volume will be about 200 vehicles per day (1.4 ESAL/day) or less for the residential streets, consisting of mostly cars and pickup trucks, with a daily mail/delivery truck and a weekly garbage truck. Based on these traffic parameters, the estimated CBR given above, a 20-year life expectancy, and the procedures and typical design inputs outlined in the UDOT Pavement Design Manual (2008), we recommend the minimum asphalt pavement section presented below. The pavement section should meet the minimum values are required by the jurisdiction or the values below, whichever is greater.

Table 5: Pavement Section Recommendations

Asphalt Thickness (in)	Compacted Aggregate Base Thickness (in)	Compacted Subbase Thickness (in)
3	8*	0

* Stabilization may be required

If the pavement will be required to support excessive construction traffic (such as dump trucks hauling soil to raise or lower the site), more than an occasional semi-tractor or fire truck, or more traffic than listed above, our office should be notified so that we can re-evaluate the pavement section recommendations. The following also apply:

- The subgrade should be prepared by proof rolling to a firm, non-yielding surface, with any identified soft areas stabilized as discussed above in Section 8.5.
- Site grading fills below the pavements should meet structural fill composition and placement recommendations per Sections 8.3 and 8.4 herein.
- Asphaltic concrete, aggregate base and sub-base material composition should meet local, APWA, or UDOT requirements. Gradation requirements and frequency shall be followed as required by local, APWA, or UDOT requirements, but not to exceed 500 tons.
- Aggregate base and sub-base is compacted to local, APWA, or UDOT requirements, or to at least 95 percent of maximum dry density (ASTM D 1557).
- The aggregate base shall have a CBR value to 70 percent or greater and the subbase shall have a CBR value of 10 percent or greater.
- Asphaltic concrete is compacted to local or UDOT requirements, or to at least 96 percent of the laboratory Marshall density (ASTM D 6927).

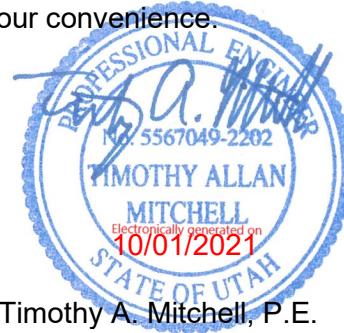
14.0 GENERAL CONDITIONS

The exploratory data presented in this report was collected to provide geotechnical design recommendations for this project. The explorations may not be indicative of subsurface conditions outside the study area or between points explored and thus have a limited value in depicting subsurface conditions for contractor bidding. Variations from the conditions portrayed in the explorations may occur and which may be sufficient to require modifications in the design. If during construction, conditions are different than presented in this report, Earthtec should be advised immediately so that the appropriate modifications can be made.

The findings and recommendations presented in this geotechnical report were prepared in accordance with generally accepted geotechnical engineering principles and practice in this area of Utah at this time. No warranty or representation is intended in our proposals, contracts, letters, or reports. Failure to consult with Earthtec regarding any changes made during design and/or construction of the project from those discussed herein relieves Earthtec from any liability arising from changed conditions at the site.

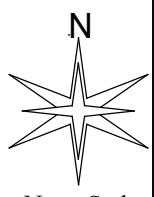
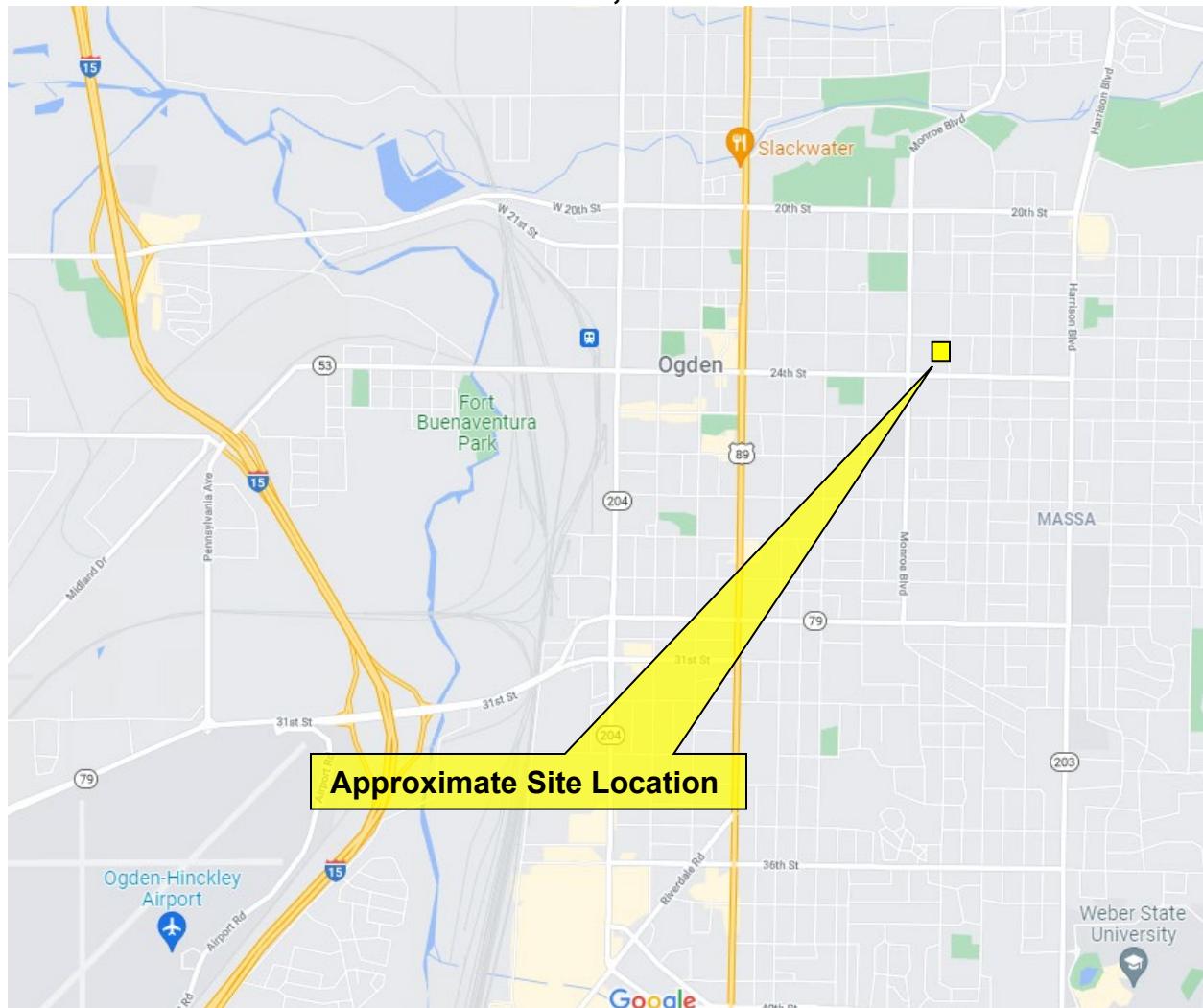
This geotechnical report is based on relatively limited subsurface explorations and laboratory testing. Subsurface conditions may differ in some locations of the site from those described herein, which may require additional analyses and possibly modified recommendations. Thus, we strongly recommend consulting with Earthtec regarding any changes made during design and construction of the project from those discussed herein. Failure to consult with Earthtec regarding any such changes relieves Earthtec from any liability arising from changed conditions at the site.

To maintain continuity, Earthtec should also perform materials testing and special inspections for this project. The recommendations presented herein are based on the assumption that an adequate program of tests and observations will be followed during construction to verify compliance with our recommendations. We also assume that we will review the project plans and specifications to verify that our conclusions and recommendations are incorporated and remain appropriate (based on the actual design). Earthtec should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Earthtec also should be retained to provide observation and testing services during grading, excavation, foundation construction, and other earth-related construction phases of the project.


We appreciate the opportunity of providing our services on this project. If we can answer questions or be of further service, please contact Earthtec at your convenience.

Respectfully;

EARTHTEC ENGINEERING

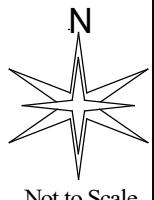


Michael S. Schedel
Staff Geologist

Timothy A. Mitchell, P.E.
Senior Geotechnical Engineer

VICINITY MAP
QUINCY INFILL PROJECT
2325 QUINCY AVENUE
OGDEN, UTAH

Not to Scale

PROJECT NO.: 219060


FIGURE NO.: 1

**SITE PLAN SHOWING
LOCATION OF TEST PITS
QUINCY INFILL PROJECT
2325 QUINCY AVENUE
OGDEN, UTAH**

*Site Plan provided by Client.

Approximate Test Pit Locations

Not to Scale

PROJECT NO.: 219060		FIGURE NO.: 2
---------------------	---	---------------

TEST PIT LOG

NO.: TP-1

PROJECT: Quincy Infill Project
CLIENT: Ogden City Community Development
LOCATION: See Figure No. 2
OPERATOR: D. Judd
EQUIPMENT: Track Mounted Mini Excavator

DEPTH TO WATER; INITIAL ▽ : 9.5 ft.

PROJECT NO.: 219060
DATE: 09/14/21
ELEVATION: Not Measured
LOGGED BY: M. Schedel

AT COMPLETION ▽ :

Depth (Ft.)	Graphic Log	USCS	Description	Samples	TEST RESULTS								
					Water Cont. (%)	Dry Dens. (pcf)	LL	PI	Gravel (%)	Sand (%)	Fines (%)	Other Tests	
0	X		FILL, silty gravel with sand, dry, brown, organics, debris									SS	
1													
2													
3													
4													
5	ML		SILT with sand, medium stiff (estimated), moist, light brown, pinholes			21	104	25	3	1	16	83	C
6													
7													
8													
9													
10	SP		Poorly Graded SAND with gravel, loose (estimated), moist, light brown										
11													
12	SM		Silty SAND with gravel, loose (estimated), wet, light brown, iron oxide stains										
			Test Pit Terminated at 10 Feet										

Notes: No groundwater encountered.

Tests Key

CBR = California Bearing Ratio
 C = Consolidation
 R = Resistivity
 DS = Direct Shear
 SS = Soluble Sulfates
 B = Burnoff

TEST PIT LOG

NO.: TP-2

PROJECT: Quincy Infill Project
CLIENT: Ogden City Community Development
LOCATION: See Figure No. 2
OPERATOR: D. Judd
EQUIPMENT: Track Mounted Mini Excavator

DEPTH TO WATER; INITIAL ▽ : 7.5 ft.

PROJECT NO.: 219060
DATE: 09/14/21
ELEVATION: Not Measured
LOGGED BY: M. Schedel

AT COMPLETION ▽ :

Depth (Ft.)	Graphic Log	USCS	Description	Samples	TEST RESULTS							
					Water Cont. (%)	Dry Dens. (pcf)	LL	PI	Gravel (%)	Sand (%)	Fines (%)	Other Tests
0												
1			FILL, silty sand with gravel, dry, brown, debris, organics									
2												
3												
4												
5		CL-ML	Silty CLAY with sand, medium stiff (estimated), moist, light brown, pinholes, roots	█	18		25	7	2	29	69	
6												
7			Silty SAND, loose (estimated), moist to wet, brown, iron oxide stains	✗								
8		SM	...with gravel	✗								
9			Test Pit Terminated at 9 feet due to Slumping Sands									
10												
11												
12												

Notes: No groundwater encountered.

Tests Key

CBR = California Bearing Ratio
 C = Consolidation
 R = Resistivity
 DS = Direct Shear
 SS = Soluble Sulfates
 B = Burnoff

TEST PIT LOG

NO.: TP-3

PROJECT: Quincy Infill Project

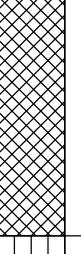
CLIENT: Ogden City Community Development

LOCATION: See Figure No. 2

OPERATOR: D. Judd

EQUIPMENT: Track Mounted Mini Excavator

DEPTH TO WATER; INITIAL : 8 ft.


PROJECT NO.: 219060

DATE: 09/14/21

ELEVATION: Not Measured

LOGGED BY: M. Schedel

AT COMPLETION :

Depth (Ft.)	Graphic Log	USCS	Description	Samples	TEST RESULTS							
					Water Cont. (%)	Dry Dens. (pcf)	LL	PI	Gravel (%)	Sand (%)	Fines (%)	Other Tests
0												
1			FILL, silty sand with gravel, dry, brown, debris, organics									
2												
3			Sandy SILT, very stiff to stiff (estimated), slightly moist to moist, brown, pinholes, roots, moderately cemented									
4			...lightly cemented			17			6	35	59	
5		ML										
6			...iron oxide stains, no cementing									
7												
8		CL	Lean CLAY with sand, medium stiff (estimated), wet, brown, lightly cemented			25	104	28	11	2	24	74
9												
10			Test Pit Terminated at 9 Feet due to Slumping Sides									
11												
12												

Notes: No groundwater encountered.

Tests Key

CBR = California Bearing Ratio
 C = Consolidation
 R = Resistivity
 DS = Direct Shear
 SS = Soluble Sulfates
 B = Burnoff

LEGEND

PROJECT: Quincy Infill Project
CLIENT: Ogden City Community Development

DATE: 09/14/21
LOGGED BY: M. Schedel

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR SOIL DIVISIONS		USCS SYMBOL	TYPICAL SOIL DESCRIPTIONS	
COARSE GRAINED SOILS (More than 50% retaining on No. 200 Sieve)	GRAVELS (More than 50% of coarse fraction retained on No. 4 Sieve)	CLEAN GRAVELS (Less than 5% fines)	GW	Well Graded Gravel, May Contain Sand, Very Little Fines
			GP	Poorly Graded Gravel, May Contain Sand, Very Little Fines
		GRAVELS WITH FINES (More than 12% fines)	GM	Silty Gravel, May Contain Sand
			GC	Clayey Gravel, May Contain Sand
	SANDS (50% or more of coarse fraction passes No. 4 Sieve)	CLEAN SANDS (Less than 5% fines)	SW	Well Graded Sand, May Contain Gravel, Very Little Fines
			SP	Poorly Graded Sand, May Contain Gravel, Very Little Fines
		SANDS WITH FINES (More than 12% fines)	SM	Silty Sand, May Contain Gravel
			SC	Clayey Sand, May Contain Gravel
FINE GRAINED SOILS (More than 50% passing No. 200 Sieve)	SILTS AND CLAYS (Liquid Limit less than 50)		CL	Lean Clay, Inorganic, May Contain Gravel and/or Sand
			ML	Silt, Inorganic, May Contain Gravel and/or Sand
			OL	Organic Silt or Clay, May Contain Gravel and/or Sand
	SILTS AND CLAYS (Liquid Limit Greater than 50)		CH	Fat Clay, Inorganic, May Contain Gravel and/or Sand
			MH	Elastic Silt, Inorganic, May Contain Gravel and/or Sand
			OH	Organic Clay or Silt, May Contain Gravel and/or Sand
	HIGHLY ORGANIC SOILS		PT	Peat, Primarily Organic Matter

SAMPLER DESCRIPTIONS

SPLIT SPOON SAMPLER
(1 3/8 inch inside diameter)

MODIFIED CALIFORNIA SAMPLER
(2 inch outside diameter)

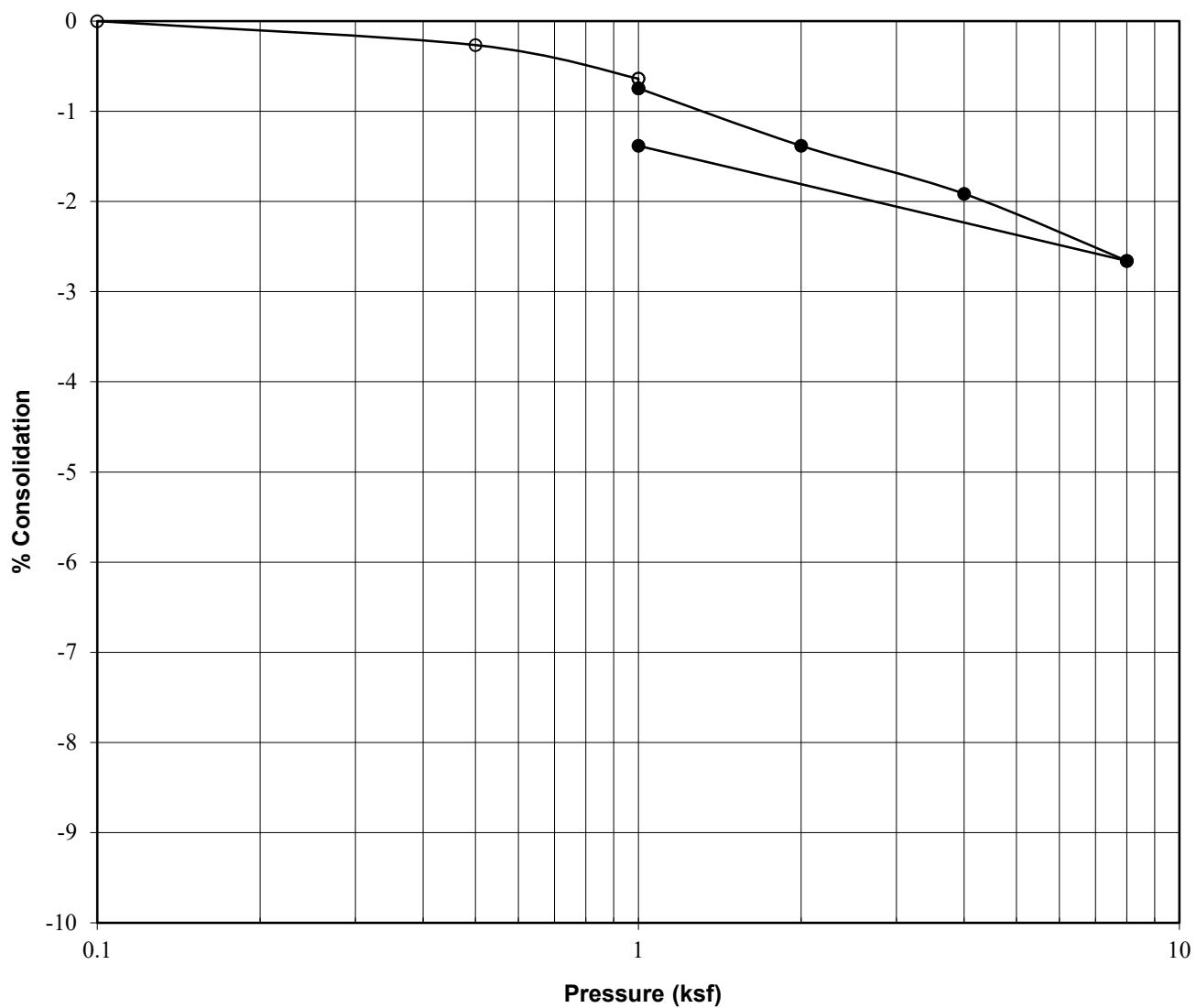
SHELBY TUBE
(3 inch outside diameter)

BLOCK SAMPLE

BAG/BULK SAMPLE

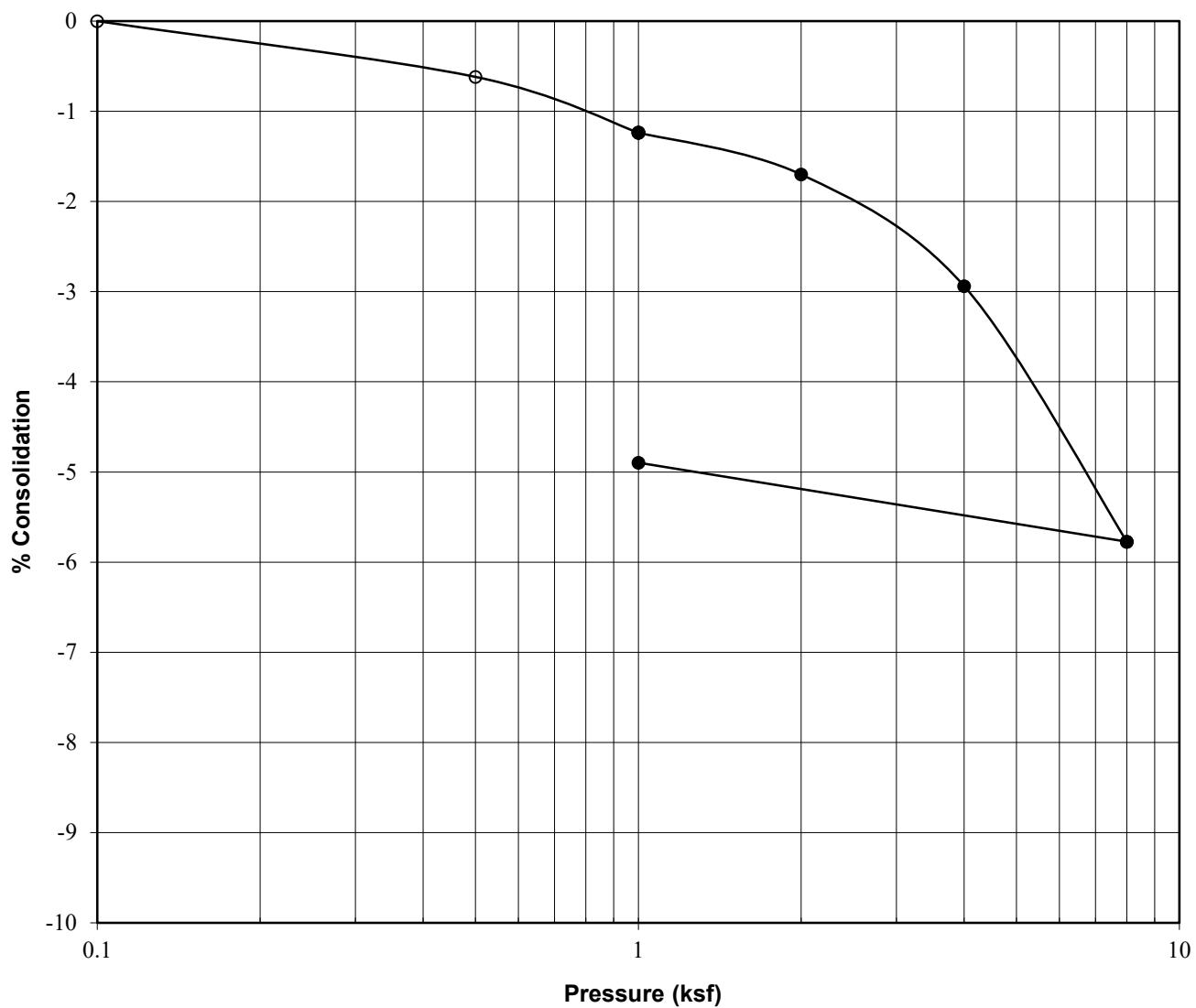
WATER SYMBOLS

Water level encountered during field exploration



Water level encountered at completion of field exploration

NOTES:


1. The logs are subject to the limitations, conclusions, and recommendations in this report.
2. Results of tests conducted on samples recovered are reported on the logs and any applicable graphs.
3. Strata lines on the logs represent approximate boundaries only. Actual transitions may be gradual.
4. In general, USCS symbols shown on the logs are based on visual methods only: actual designations (based on laboratory tests) may vary.

CONSOLIDATION - SWELL TEST

Project: Quincy Infill Project
Location: TP-1
Sample Depth, ft: 5
Description: Block
Soil Type: SILT with sand (ML)
Natural Moisture, %: 21
Dry Density, pcf: 104
Liquid Limit: 25
Plasticity Index: 3
Water Added at: 1 ksf
Percent Collapse: 0.1

CONSOLIDATION - SWELL TEST

Project: Quincy Infill Project
Location: TP-3
Sample Depth, ft: 8
Description: Block
Soil Type: Lean CLAY with sand (CL)
Natural Moisture, %: 25
Dry Density, pcf: 104
Liquid Limit: 28
Plasticity Index: 11
Water Added at: 1 ksf

PROJECT NO.: 219060

FIGURE NO.: 8

APPENDIX A

Timpview Analytical Laboratories

A Chemtech-Ford, Inc. Affiliate
1384 West 130 South Orem, UT 84058 (801) 229-2282

Certificate of Analysis

Earth Tech, LLC (dba Earthtec)

Jeremy Balleck

1497 W 40 S

Lindon, UT 84042

DW System # :

Work Order #: 21I0931

PO# / Project Name: 219059

Receipt: 9/15/21 15:00

Batch Temp °C: 32.8

Date Reported: 9/22/2021

Sample Name: 219059 TP-1 @ 0'

Collected: 9/14/21 9:00

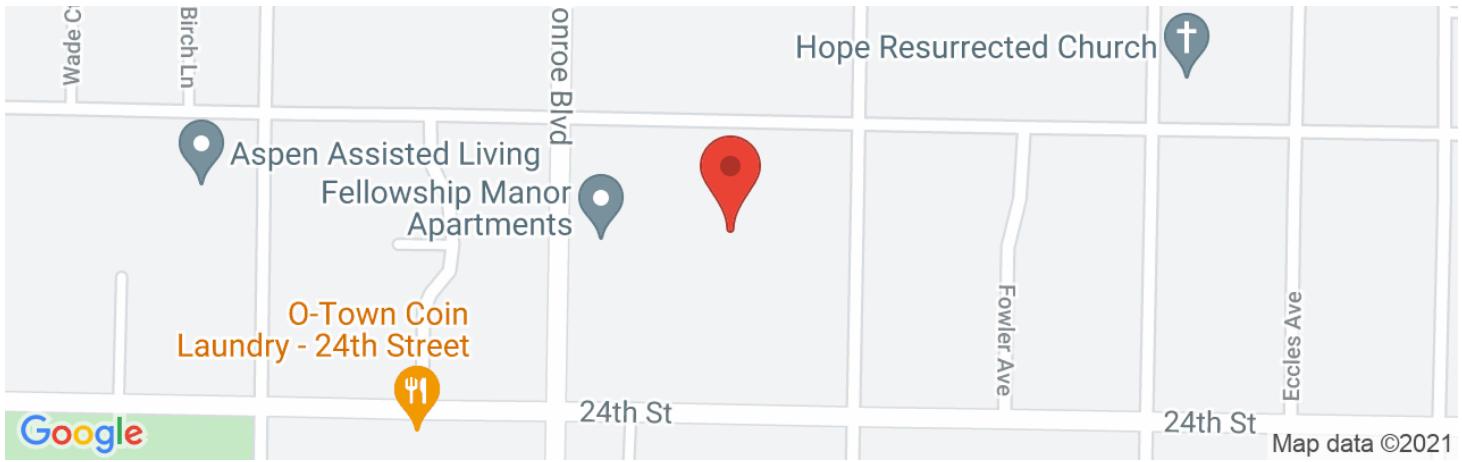
Matrix: Solid

Collected By: M. Schedel

Parameter	Lab ID #	Method	Analysis	Date / Time	Result	Units	MRL	Flags
Sulfate, Soluble (IC)	21I0931-01	EPA 300.0		9/21/21	< 10	mg/kg dry	10	
Total Solids	21I0931-01	SM 2540G		9/20/21	97.3	%	0.1	

Comment: Quincy Inn Fill Project

Reviewed by:


Joyce Applegate, Project Manager

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program by a Chemtech-Ford affiliate company, except where otherwise noted.

QUINCY INFILL PROJECT

Latitude, Longitude: 41.223879, -111.957625

Date	9/27/2021, 9:59:19 AM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D - Default (See Section 11.4.3)

Type	Value	Description
S _S	1.367	MCE _R ground motion. (for 0.2 second period)
S ₁	0.502	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.641	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1.094	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Type	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F _a	1.2	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.621	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.745	Site modified peak ground acceleration
T _L	8	Long-period transition period in seconds
SsRT	1.367	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.587	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	2.925	Factored deterministic acceleration value. (0.2 second)
S1RT	0.502	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.571	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.258	Factored deterministic acceleration value. (1.0 second)
PGAd	1.14	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.862	Mapped value of the risk coefficient at short periods
C _{R1}	0.879	Mapped value of the risk coefficient at a period of 1 s

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.