

DOUBLE GARAGE
21⁵ x 21⁵

AREA = 484 SQ. FT.

BRICK VENEER STEEL ANGLE LINTEL SCHEDULE

OPENING SIZE	ANGLE SIZE	COMMENTS
0'-0" TO 6'-11"	L3.1/2" x 3.1/2" x 1/4"	
7'-0" TO 8'-11"	L4" x 3.1/2" x 1/4"	
9'-0" TO 9'-11"	L5" x 3.1/2" x 1/4"	
10'-0" TO 18'-0"	L5" x 3.1/2" x 1/4"	CONNECT STEEL ANGLE TO LVL BEAM WITH 1/2" DIA x 3" LAG SCREWS AT 16" O.C.

BRICK VENEER STEEL ANGLE LINTEL NOTES:

1. STEEL LINTELS SHALL HAVE A MINIMUM BEARING LENGTH OF 12" PER FOOT OF OPENING OR 18" FOR 10'-0" OPENINGS. LINTELS SHALL NOT EXCEED 12'.
2. LINTELS ARE DESIGNED TO SUPPORT UNIFORM LOADS CONSISTING ONLY OF WEIGHT OF WALL WITH A 60 DEGREE ISOCLES TRIANGLE AREA ABOVE OPENING.
3. STEEL LINTELS SHALL HAVE A LEAD VERTICAL.
4. ALL ANGLE LINTELS SHALL BE CORROSION RESISTANT.

CONCRETE FOOTING SCHEDULE^{1,2,3}

MARK	WDT	LENGTH	THICK.	CROSSWISE REINFORCING			LENGTHWISE REINFORCING			COMMENTS	
				NO.	SIZE	LENGTH	SPACE	NO.	SIZE		
CONTINUOUS FOOTINGS											
FC1.5	1"-6"	CONT.	10"	N/A	N/A	N/A	N/A	2	#4	CONT.	12"
FC1.7	1"-8"	CONT.	10"	N/A	N/A	N/A	N/A	2	#4	CONT.	14"
FC2.0	2"-0"	CONT.	12"	N/A	N/A	N/A	N/A	3	#4	CONT.	9"
FC2.2	2"-6"	CONT.	12"	#4	2"-0"	12"	4	#4	CONT.	8"	
FC3.0	3"-0"	CONT.	12"	#4	2"-6"	12"	5	#4	CONT.	7.5"	
FC3.5	3"-6"	CONT.	12"	#4	3"-0"	12"	5	#4	CONT.	9"	
SQUARE FOOTINGS											
FS2.0	2"-0"	2"-0"	12"	3	#4	1"-6"	9"	3	#4	1"-6"	9"
FS2.2	2"-6"	2"-6"	12"	4	#4	2"-0"	8"	4	#4	2"-0"	8"
FS3.0	3"-0"	3"-0"	12"	5	#4	2"-6"	7.5"	5	#4	2"-6"	7.5"
FS3.5	3"-6"	3"-6"	12"	5	#4	3"-0"	9"	5	#4	3"-0"	9"
FS4.0	4"-0"	4"-0"	12"	6	#4	3"-6"	8.4"	6	#4	3"-6"	8.4"
FS4.5	4"-6"	4"-6"	12"	7	#4	4"-0"	8"	7	#4	4"-0"	8"
FS5.0	5"-0"	5"-0"	14"	8	#4	4"-6"	7.7"	8	#4	4"-6"	7.7"

CONCRETE FOOTING NOTES:

1. PLACE ALL FOOTING REINFORCING IN BOTTOM OF FOOTING WITH 1" CLEAR CONCRETE COVER UNLESS NOTED OTHERWISE.
2. LENGTH NAILS.
3. ADJUSTABLE PROVIDE SCHEDULED REINFORCING AT TOP OF FOOTING WHEN NOTED ON PLANS.
4. FC - CONTINUOUS FOOTING; FS - SQUARE FOOTING.

METAL HOLDOWN SCHEDULE ¹			
MARK	SIMPSON HOLDOWN	ATTACHMENT	COMMENTS
LSTDH8 OR LSTDH10	LSTDH8 OR LSTDH10 (RIM JOIST)	(20)-16d SINKER NAILS	STHD10, STHD14, HT4, OR HDU4 MAY BE USED IN LIEU OF LSTDH8 OR LSTDH10
STDH14 OR ² STDH14RJ	STDH14 OR ² STDH14RJ (RIM JOIST)	(28)-16d SINKER NAILS	STHD14, HT4, OR HDU4 MAY BE USED IN LIEU OF STDH10
HT4	HT4	ALL-THREAD RD EPOXIED 8" MIN. INTO TOP OF FDTN.	SEE DETAIL 3/S3.1 FOR EPOXY ATTACHMENT
HDU4	HDU4-SDS2.5	ALL-THREAD RD EPOXIED 6" MIN. INTO TOP OF FDTN.	SEE DETAIL 3/S3.1 FOR EPOXY ATTACHMENT
HDU5	HDU5-SDS2.5	ALL-THREAD RD EPOXIED 11" MIN. INTO TOP OF FDTN.	SEE DETAIL 3/S3.1 FOR EPOXY ATTACHMENT
HDQ8	HDQ8-SDS3	ALL-THREAD RD EPOXIED 5" MIN. INTO TOP OF FDTN.	SEE DETAIL 3/S3.1 FOR EPOXY ATTACHMENT

METAL HOLDOWN NOTES:

1. ALL HOLDOWNS SHALL BE INSTALLED PER THE MANUFACTURER'S RECOMMENDATIONS. SEE DETAIL 3/S3.1
2. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

2. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

3. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

4. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

5. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

6. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

7. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

8. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

9. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

10. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

11. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

12. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

13. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

14. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

15. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

16. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

17. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

18. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

19. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

20. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

21. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

22. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

23. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

24. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

25. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

26. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

27. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

28. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

29. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

30. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

31. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

32. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

33. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

34. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

35. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

36. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

37. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

38. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

39. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

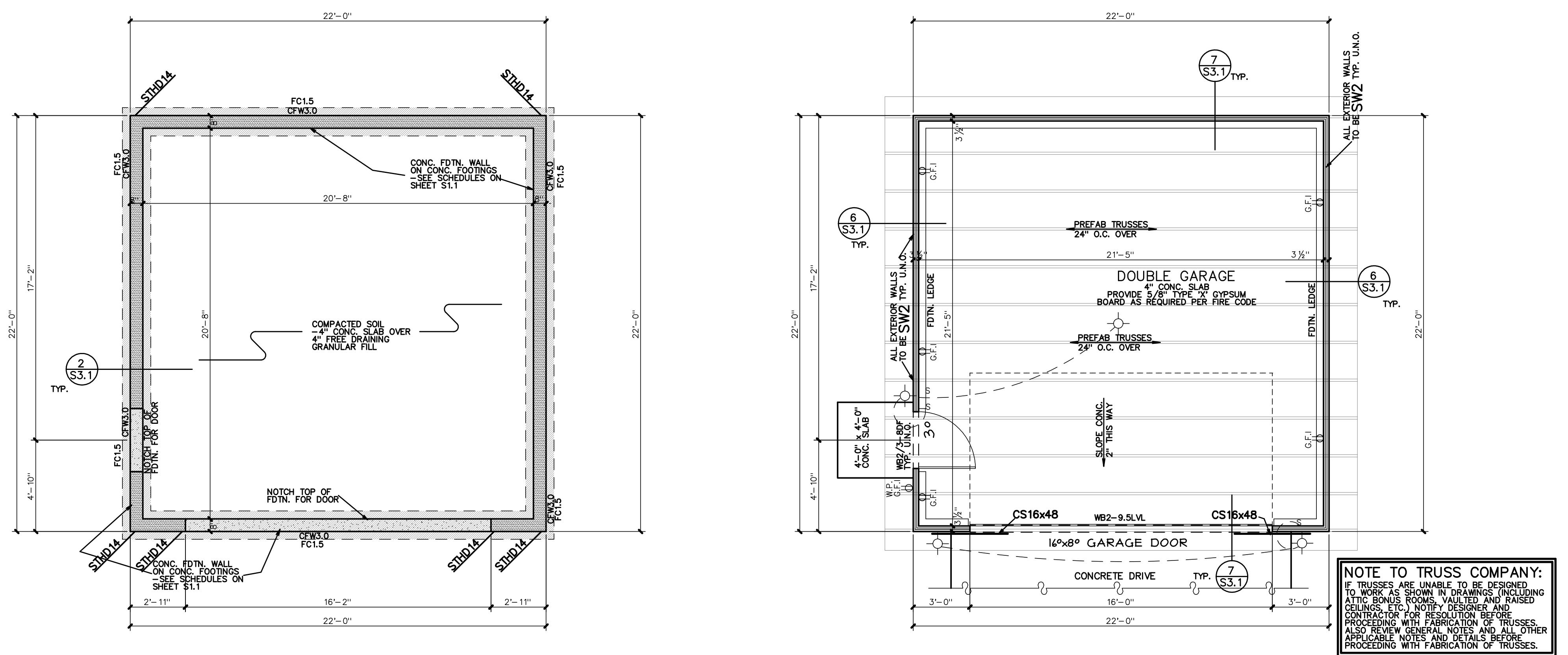
40. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

41. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

42. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

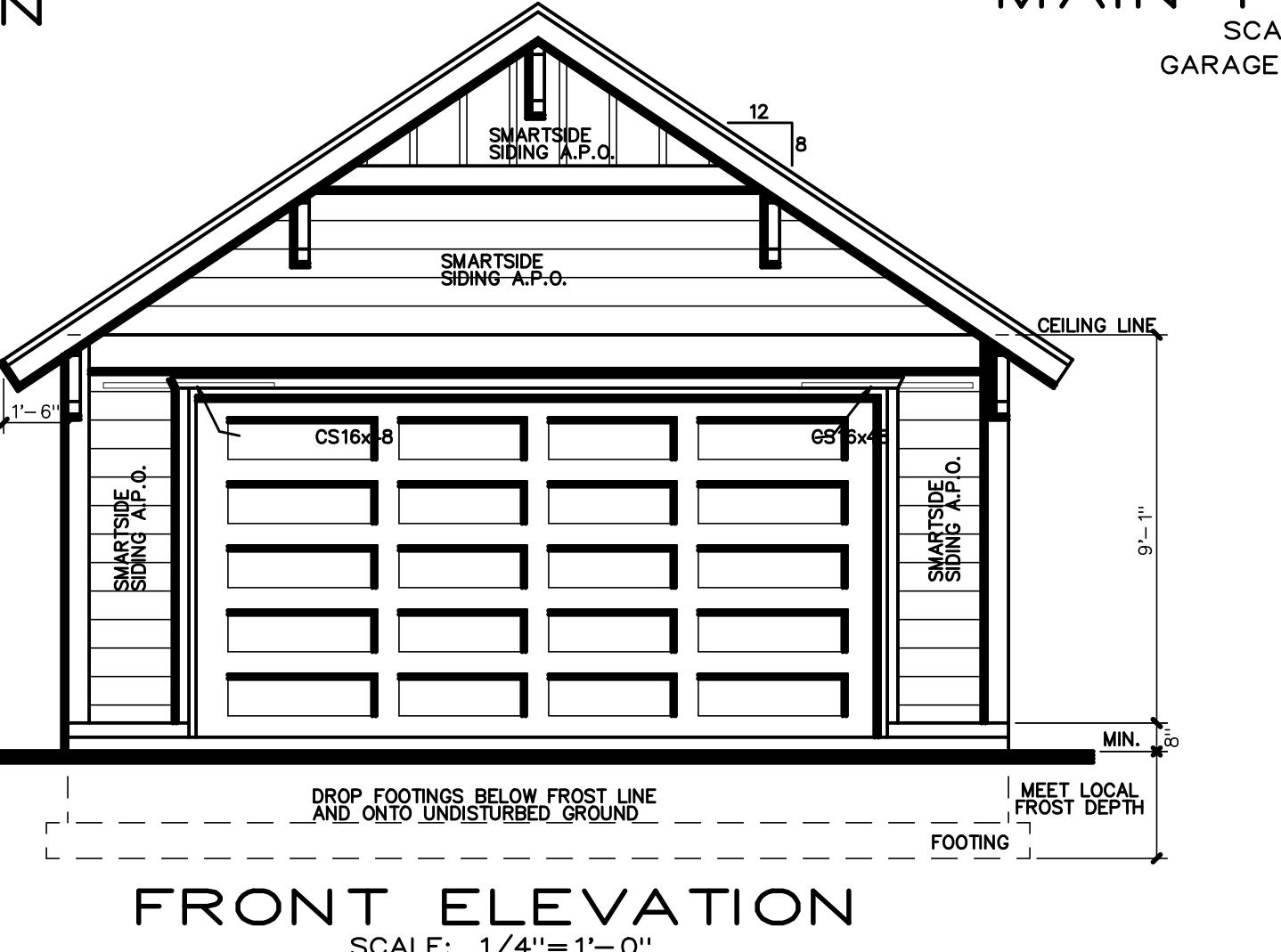
43. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

44. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

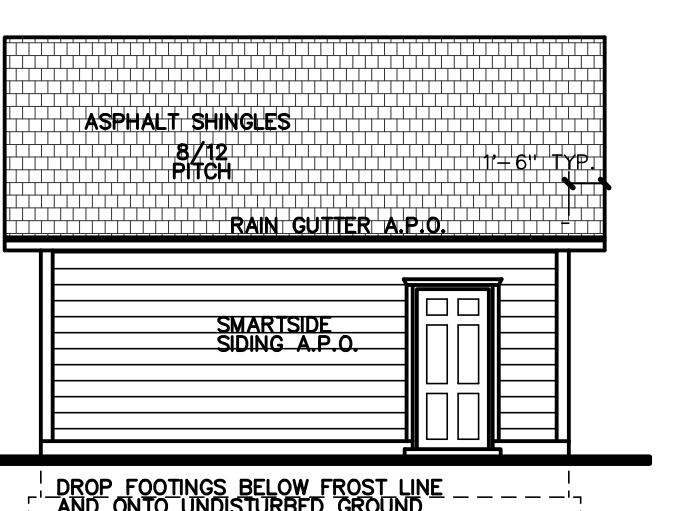

45. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

46. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

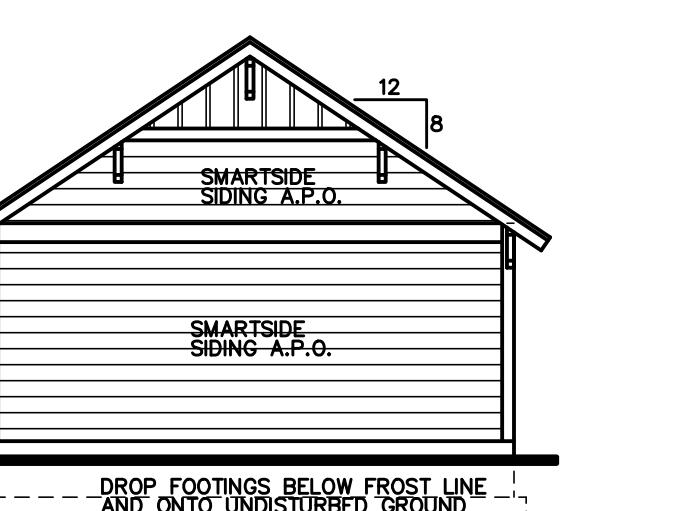
47. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

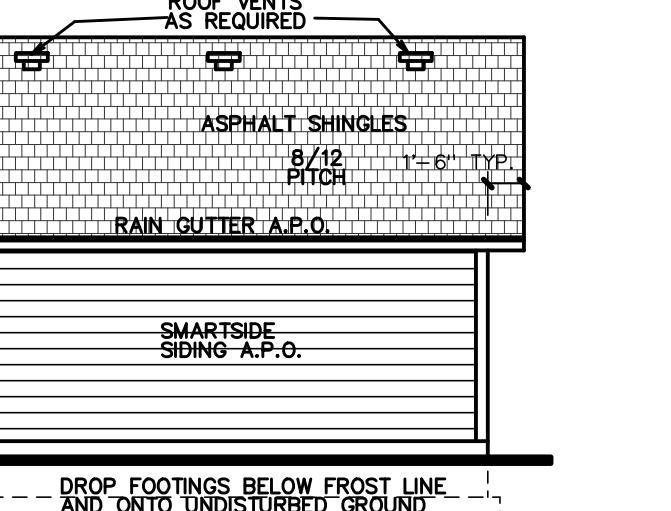

48. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE USED.

49. USE RIM JOIST MODEL IF STRAP IS LOCATED AT A RIM JOIST, OTHERWISE, A NON-RIM JOIST MODEL MAY BE



FOUNDATION PLAN
SCALE: 1/4"=1'-0"


MAIN FLOOR PLAN
SCALE: 1/4"=1'-0"
GARAGE AREA = 484 SQ. FT.


FRONT ELEVATION
SCALE: 1/4"=1'-0"

LEFT ELEVATION
SCALE: 1/8"=1'-0"

REAR ELEVATION
SCALE: 1/8"=1'-0"

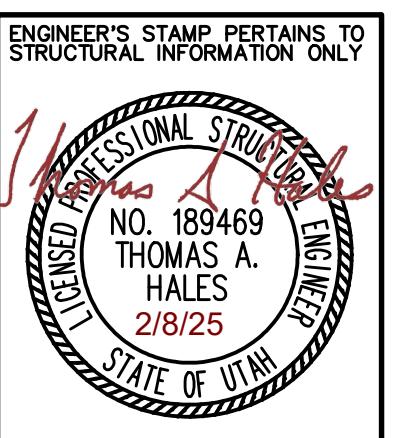
RIGHT ELEVATION
SCALE: 1/8"=1'-0"

CONSTRUCTION COST NOTE:
THE BUILDING DESIGN SHOWN IN THESE PLANS IS BASED ON DIRECTOR'S PROFESSIONAL JUDGEMENT. THE OWNER OR GENERAL CONTRACTOR WE HAVE NOT ATTEMPTED AND IT IS OUT OF THE SCOPE OF OUR SERVICES TO PROVIDE A DETAILED DESIGN OF THE SITE IMPROVEMENTS, OR TO PROVIDE A DESIGN THAT IS SUITABLE FOR THE COST IMPROVEMENTS THAT THE OWNER IS THE RESPONSIBILITY OF THE OWNER AND OR GENERAL CONTRACTOR TO ENSURE VERIFY THAT THE SITE IMPROVEMENTS ARE SUITABLE FOR THE BUILDING AND ASSOCIATED SITE IMPROVEMENTS WILL BE SATISFACTORY TO THE OWNER'S EXPECTATIONS.

SURFACE DRAINAGE:
EXTERIOR GRADE SHALL BE DRAINED AWAY FROM THE WATER AWAY FROM FOUNDATION WALLS WITH A MINIMUM OF 6 INCH FALL. IMPERVIOUS SURFACES WITHIN 10 FEET OF THE FOUNDATION WALL SHALL BE SLOPED 10 PERCENT MINIMUM AWAY FROM THE BUILDING.

SITE AND LOT NOTE:
CONTRACTOR/OWNER SHALL VERIFY ACCURACY OF SNOW LOADS WITH BUILDING OFFICIAL (NO CONCRETE OR LIGHTWEIGHT CONC. HAS BEEN INCLUDED IN THE FLOOR DESIGN).
CONTRACTOR/OWNER SHALL VERIFY ACCURACY OF SNOW LOADS WITH BUILDING OFFICIAL (NO CONCRETE OR LIGHTWEIGHT CONC. HAS BEEN INCLUDED IN THE FLOOR DESIGN).

DESIGN LOADS	
ROOF:	SNOW = 30 psf


NOTICE AND WARNING
THESE DRAWINGS & DESIGNS ARE THE PROPERTY OF LOMOND VIEW DESIGNS, LLC AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT WRITTEN CONSENT.
THESE DRAWINGS & DESIGNS MAY BE USED FOR THE CONSTRUCTION OF A SINGLE BUILDING LOCATED AS FOLLOWS:
LOT # 4
SUBDIVISION: SYCAMORE COVE
ADDRESS: 866 CAHOON CIRCLE
CITY: OGDEN STATE: UTAH
ANY OTHER USE OF THESE DRAWINGS & DESIGNS IS STRICTLY FORBIDDEN AND VIOLATORS WILL BE PROSECUTED.
DATE: 2/8/2025
TIME: CHG TO 0484160129, #16006
SHEET PLANS AND ELEVATIONS

NOTES TO FOUNDATION PLAN:

- SEE GENERAL NOTES, SCHEDULES, AND DETAILS FOR ADDITIONAL CONSTRUCTION REQUIREMENTS. THIS PLAN IS TO BE WORKED ALONG WITH THESE OTHER SUPPORTING SHEETS. THE OWNER AND CONTRACTOR SHALL THOROUGHLY REVIEW AND BECOME FAMILIAR WITH THESE DRAWINGS BEFORE PROCEEDING WITH CONSTRUCTION.
- WALLS: 2x4 WALLS ARE SHOWN WITH A 3 1/2" THICKNESS. ALL BEARING, SHEAR, AND 2x6 WALLS ARE SHOWN WITH A 5 1/2" THICKNESS. ALL BEARING, SHEAR, AND 2x6 WALLS SHALL HAVE STUDS PLACED AT 16" O.C. MAXIMUM, UNLESS NOTED OTHERWISE. FOOTINGS SUPPORTING CONCRETE FOUNDATION WALLS SHALL BE A FC2.0.
- FOOTINGS: SEE THE GENERAL NOTES. THE CONCRETE FOOTING SCHEDULE, AND THE DETAILS ON SHEET S3.1 FOR ADDITIONAL INFORMATION. FOOTINGS SUPPORTING CONCRETE FOUNDATION WALLS SHALL BE A FC1.5 FOOTING UNLESS NOTED OTHERWISE. FOOTINGS SUPPORTING EXTERIOR 2x6 BEARING WALLS SHALL BE A FC1.5 FOOTING UNLESS NOTED OTHERWISE. SEE DETAIL 1/3.1 FOR FOOTING CORNERS AND INTERCTIONS.
- FOUNDATION WALLS: SEE THE GENERAL NOTES. THE CONCRETE FOUNDATION WALL SCHEDULE, AND THE DETAILS ON SHEET S3.1 FOR ADDITIONAL INFORMATION. REINFORCING SHALL BE BASED ON THE FOUNDATION WALL HEIGHT AND DESIGN. REINFORCING SHALL BE PLACED IN THE FOUNDATION WALL AT 16" O.C. MAXIMUM. THE FOUNDATION WALL HEIGHT BETWEEN LOW AND HIGH GRADE, THAN THAT SHOWN IN THE SCHEDULE, SEE DETAIL 1/3.1 FOR FOUNDATION WALL CORNERS AND INTERCTIONS. FOUNDATION WALLS SHALL NOT BACKFILLED UNTIL THE FOUNDATION WALLS ARE PROPERLY SHOWN TO PROVIDE APPROPRIATE BRACING. SOIL USED FOR BACKFILL SHALL CONFORM TO THAT SPECIFIED IN THE CONCRETE FOUNDATION WALL SCHEDULE.
- ANCHOR BOLTS: SEE THE GENERAL NOTES AND SHEAR WALL SCHEDULE ON SHEET S1.1 FOR FOUNDATION ANCHOR BOLT REQUIREMENTS.
- SHAFR WALLS: SEE THE SHAFR WALL SCHEDULE FOR ADDITIONAL INFORMATION. ALL EXTERIOR WALLS SHALL BE A SW1 TYPE SHEAR WALL UNLESS NOTED OTHERWISE. TO HELP DESIGN SEISMIC LOADS, SHEAR WALLS SHALL BE ATTACHED AT THE TOP AND BOTTOM BY ONE OF THE METHODS SHOWN IN THE DETAILS ON SHEET S3.1, U.N.O. WALLS NOTED AS 'BRACED WALLS' SHALL BE A SW1 SHEAR WALL TYPE.
- BEARING AND EXTERIOR WALLS: ALL BEARING AND EXTERIOR WALLS SHALL CONSIST OF FULL HEIGHT STUD FRAMING AND BE ATTACHED AT THE TOP AND BOTTOM. SEE THE METAL MEMOS SHOWN IN THE DETAILS ON SHEET S3.1 FOR U.N.O. ALL BEARING WALL OPENINGS SHALL HAVE A HEADER PROVIDED AS NOTED ON THE PLANS.
- WOOD BEAMS AND HEADERS: UNLESS SPECIFICALLY CALLED OUT ON THE DRAWING, SEE THE WOOD BEAM HEADER SCHEDULE FOR SIZES AND ADDITIONAL INFORMATION. CONCRETE BEAMS ARE NOT PROVIDED. SEE THE WOOD BEAM/HEADER SCHEDULE FOR SPANS UP TO 5'-2" THAT ARE NOTED OTHERWISE ON THE PLANS.
- WOOD POSTS: ALL WOOD POSTS SHALL HAVE APPROPRIATE SIMPSON POST CAPS AND BASE CONNECTORS INSTALLED GOOD FOR AT LEAST 900 POUNDS UP TO 1000 POUNDS. POSTS SHALL NOT EXCEED 10' IN LENGTH. SEE DETAIL 1/3.1 FOR STANDOFF BASE WHERE POSTS ARE INSTALLED ON CONCRETE PIER OR FOOTINGS.
- HOLDOWNS: SEE THE METAL HOLDOWN SCHEDULE ON SHEET S1.1 AND DETAIL 4/3.1 FOR ADDITIONAL INFORMATION. PROVIDE HOLDOWNS AS NOTED ON THE DRAWINGS. RIM JOIST VERSIONS OF STRAIGHT RIM JOIST LOCATED AT RIM JOIST FOR FLAT OR METAL DECKED ROOF ARE AN ALTERNATE HOLDOWN STRAP AS NOTED IN THE COMMENTS COLUMN OF THE METAL HOLDOWN SCHEDULE.
- METAL CONNECTORS: PROVIDE METAL CONNECTORS AS NOTED ON THE DRAWINGS. SEE THE METAL CONNECTOR SCHEDULE ON SHEET S1.1 FOR ADDITIONAL INFORMATION.
- Poison soil for termite control as per local code requirements.

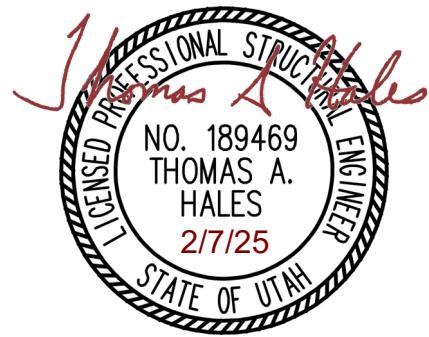
NOTES TO FLOOR PLAN:

- SEE GENERAL NOTES, SCHEDULES, AND DETAILS FOR ADDITIONAL CONSTRUCTION REQUIREMENTS. THIS PLAN IS TO BE WORKED ALONG WITH THESE OTHER SUPPORTING SHEETS. THE OWNER AND CONTRACTOR SHALL THOROUGHLY REVIEW AND BECOME FAMILIAR WITH THESE DRAWINGS BEFORE PROCEEDING WITH CONSTRUCTION.
- WALLS: 2x4 WALLS ARE SHOWN WITH A 3 1/2" THICKNESS. ALL BEARING, SHEAR, AND 2x6 WALLS ARE SHOWN WITH A 5 1/2" THICKNESS. ALL BEARING, SHEAR, AND BRACED WALLS SHALL HAVE STUDS PLACED AT 16" O.C. MAXIMUM, UNLESS NOTED OTHERWISE.
- SHAFR WALLS: SEE THE SHAFR WALL SCHEDULE FOR ADDITIONAL INFORMATION. ALL EXTERIOR WALLS SHALL BE A SW1 TYPE SHEAR WALL UNLESS NOTED OTHERWISE. TO HELP DESIGN SEISMIC LOADS, SHEAR WALLS SHALL BE ATTACHED AT THE TOP AND BOTTOM BY ONE OF THE METHODS SHOWN IN THE DETAILS ON SHEET S3.1, U.N.O. WALLS NOTED AS 'BRACED WALLS' SHALL BE A SW1 SHEAR WALL TYPE.
- BEARING AND EXTERIOR WALLS: ALL BEARING AND EXTERIOR WALLS SHALL CONSIST OF FULL HEIGHT STUD FRAMING AND BE ATTACHED AT THE TOP AND BOTTOM. SEE THE METAL MEMOS SHOWN IN THE DETAILS ON SHEET S3.1 FOR U.N.O. ALL BEARING WALL OPENINGS SHALL HAVE A HEADER PROVIDED AS NOTED ON THE PLANS.
- WOOD BEAMS AND HEADERS: UNLESS SPECIFICALLY CALLED OUT ON THE DRAWING, SEE THE WOOD BEAM HEADER SCHEDULE FOR SIZES AND ADDITIONAL INFORMATION. CONCRETE BEAMS ARE NOT PROVIDED. SEE THE WOOD BEAM/HEADER SCHEDULE FOR SPANS UP TO 5'-2" THAT ARE NOTED OTHERWISE ON THE PLANS.
- METAL CONNECTORS: PROVIDE METAL CONNECTORS AS NOTED ON THE DRAWINGS. SEE THE METAL CONNECTOR SCHEDULE ON SHEET S1.1 FOR ADDITIONAL INFORMATION.
- TRUSS FABRICATION: IF TRUSSES ARE UNABLE TO BE DESIGNED TO WORK WITH THE METHODS SHOWN IN THE DRAWINGS (INCLUDING ATTIC BONUS ROOMS, VAULTED CEILINGS, RAISED CEILINGS, ETC.), NOTIFY THE DESIGNER AND CONTRACTOR FOR RESOLUTION BEFORE PROCEEDING WITH FABRICATION OF TRUSSES.
- TRUSS RAFTER AND ROOF FRAMING: ALL TRUSSES AND RAFTERS SHALL BE DESIGNED TO WORK WITH THE METHODS SHOWN IN THE DRAWINGS. SEE THE DETAILS ON SHEET S3.1 FOR U.N.O. OVERBUILD AREA, PROVIDE OVERBUILD TRUSSES OR STICK FRAME.
- TRUSS DRAG STRUTS: TRUSSES NOTED AS DRAG STRUTS SHALL BE DESIGNED FOR A 200 PLF MIN. IN-PLANE HORIZONTAL SEISMIC LOAD APPLIED AT THE TRUSS TOR CHORD UNLESS NOTED OTHERWISE.
- PROVIDE ATTIC VENTILATION AND ATTIC ACCESS AS PER LOCAL CODE.
- PROVIDE 5/8" TYPE IX FIRE RATED GYPSUM BOARD AT AREAS AS REQUIRED BY LOCAL FIRE CODE.
- WINDOW FRAMING: ALL OPENABLE WINDOWS THAT HAVE A WINDOW SILL LOCATED MORE THAN 72" ABOVE THE EXTERIOR FINISHED GRADE OR SURFACE BELOW SHALL BE PLACED SO THAT THE WINDOW SILL IS AT LEAST 24" ABOVE THE INTERIOR FINISHED GRADE OR SURFACE. HAVE A WINDOW GUARD PROVIDED AS PER CODE. WINDOW GUARD USE FOR EGRESS SHALL HAVE A MAXIMUM SILL HEIGHT OF 44" ABOVE FINISHED FLOOR.
- PROVIDE R-13 INSULATION MINIMUM IN 2x6 EXTERIOR WALLS, AND R-19 INSULATION MINIMUM IN 2x6 EXTERIOR WALLS. PROVIDE R-38 INSULATION MINIMUM AT ALL INTERIOR TRUSS ATTIC SPACES AND RAFTER FRAMING.

ENGINEER'S STAMP PERTAINS TO STRUCTURAL INFORMATION ONLY
NOTICE AND WARNING
THESE DRAWINGS & DESIGNS ARE THE PROPERTY OF LOMOND VIEW DESIGNS, LLC AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT WRITTEN CONSENT.
THESE DRAWINGS & DESIGNS MAY BE USED FOR THE CONSTRUCTION OF A SINGLE BUILDING LOCATED AS FOLLOWS:
LOT # 4
SUBDIVISION: SYCAMORE COVE
ADDRESS: 866 CAHOON CIRCLE
CITY: OGDEN STATE: UTAH
ANY OTHER USE OF THESE DRAWINGS & DESIGNS IS STRICTLY FORBIDDEN AND VIOLATORS WILL BE PROSECUTED.
DATE: 2/8/2025
TIME: CHG TO 0484160129, #16006
SHEET PLANS AND ELEVATIONS

Lomond View Designs, LLC

304 W. Pleasant View Dr.
Ogden, UT 84414
phone: 801-782-0484


**Structural Calculations
for
Ogden City Garage
for
Lot #4, Sycamore Cove
866 Cahoon Circle
Ogden, Utah**

February 7, 2025

Note: These calculations are to be used only for the plan number and the building lot and/or address shown above. Use of these calculations for any other plan or location is prohibited unless written/signed agreement is obtained from
Thomas A. Hales indicating otherwise.

Prepared By:
Thomas A. Hales, P.E.

Job #25009 (Repeat #16006, #15063 & #14044)

TABLE OF CONTENTS

DESIGN CRITERIA	D-1 TO D-1
FOOTING DESIGN	F-1 TO F-1
WOOD FRAMING DESIGN	WF-1 TO WF-2
LATERAL ANALYSIS	L-1 TO L-2

DESIGN CRITERIA:

- A. GOVERNING BUILDING CODE: 2021 INTERNATIONAL BUILDING CODE (IBC) AND 2021 INTERNATIONAL RESIDENTIAL CODE (IRC)**
- B. GRAVITY LIVE LOADING:**
 - 1. ROOF: 30 PSF SNOW LOAD
 - 2. FLOOR: 40 PSF LIVE LOAD
- C. EARTHQUAKE: $V = S_{ds} * I * W / R = 2/3 * S_{ms} * I * W / R$**
 - 1. $S_{ms} = \text{USE 1.6}$ (SDC = 'D2')
 - 2. I , IMPORTANCE FACTOR = 1.0
 - 3. R , BUILDING TYPE = 6.5 (USE 6)
 - 4. W , WEIGHT OF STRUCTURE
- D. WIND:**
 - 1. VELOCITY: 115 MPH (LRF) * 0.775 → 90 MPH (ASD), BASIC WIND SPEED (IBC 1609.3.1)
 - 2. EXPOSURE: TYPE C
 - 3. IMP. FACTOR: 1.0, STANDARD OCCUPANCY
- E. SOIL BEARING PRESSURE: 1500 PSF ASSUMED BY OWNER**
- F: SEE DRAWINGS FOR GENERAL NOTES AND CONSTRUCTION REQUIREMENTS**

COLUMN AND FOOTING LOADS AND SIZES

Project: OGDEN CITY GARAGE

Date: 1/29/2016

Allow. Soil Bearing Press. 1500 psf

Engineer: Tom Hales

CONTINUOUS FOOTINGS

Footing/Column Location: TYP. EXTERIOR WALL

Alt. Soil Bearing Pressure

COMMENT	TRIBUTARY AREA			SUB TOTAL	CUM. TOT.
	LENGTH 1	PER 1 FT.	WEIGHT		
ROOF SNOW LOAD	13.0 ft		30 psf	390 plf	390 plf
ROOF DEAD LOAD	13.0 ft		17 psf	221 plf	611 plf
			TOTAL LOAD	611 plf	
			REQ'D FTG. WIDTH	0.4 ft	USE FC1.5

Footing/Column Location:

Alt. Soil Bearing Pressure

COMMENT	TRIBUTARY AREA			SUB TOTAL	CUM. TOT.
	LENGTH 1	PER 1 FT.	WEIGHT		
			TOTAL LOAD	0 plf	
			REQ'D FTG. WIDTH	0.0 ft	

Footing/Column Location:

Alt. Soil Bearing Pressure

COMMENT	TRIBUTARY AREA			SUB TOTAL	CUM. TOT.
	LENGTH 1	PER 1 FT.	WEIGHT		
			TOTAL LOAD	0 plf	
			REQ'D FTG. WIDTH	0.0 ft	

**WOOD BEAM DESIGN
FOR UNIFORM LOADING CONDITIONS**

Project: OGDEN CITY GARAGE
Description: 3'-0" DOOR HEADER

Date: 1/29/2016
Engineer: TAH

INPUT:

Length of Span - L (ft): **3.5**
Distance from Support to Calc. Shear - d (in) **7**

Roof Loads:

Trib. Length (ft): **13**
Snow Load (psf): **30**
Dead Load (psf): **17**

Floor Loads:

Trib. Length (ft): **0**
Live Load (psf): **40**
Dead Load (psf): **15**

Linear Loads:

Snow Load (plf): **0**
Live Load (plf): **0**
Dead Load (plf): **0**

Total Load Deflection Criteria (Span/ Δ) - Δ: **240**
Live Load Deflection Criteria (Span/ Δ) - Δ: **360**

Total Load (plf): **611 plf**
Total Live Load (plf): **390 plf**

Beam	DL= 386.75 lbs
Reactions:	LL= 682.5 lbs
	TL= 1069.3 lbs

OUTPUT:

DOUGLAS FIR-LARCH

Allowable Shear Stress - Fv (psi): 95	I (TL) (in^4): 7.37
Modulus of Elasticity - E (ksi): 1600	I (LL) (in^4): 7.05
Allowable Bending Stress - Fb (psi): 1313 2x4	A (in^2): 11.26
	S (in^3) 2x4: 8.55 3-2x4's (0.93)
	2x6: 9.86 2-2x6's (0.68)
	2x8: 10.67 2-2x8's (0.52)
	2x10: 11.68 1-2x10's (0.81)
	2x12: 13.29 1-2x12's (0.67)

GLUED-LAMINATED (24F-V4)

Allowable Shear Stress - Fv (psi): 190	I (TL) (in^4): 6.55
Modulus of Elasticity - E (ksi): 1800	I (LL) (in^4): 6.27 3.125 x 6 GLB (0.3)
Allowable Bending Stress - Fb (psi): 2400	A (in^2): 5.63 5.125 x 6 GLB (0.18)
	S (in^3): 4.68

MICRO-LAM

Allowable Shear Stress - Fv (psi): 285	EI (TL) k-in^2: 11788
Modulus of Elasticity - E (ksi): 1900	EI (LL) (k-in^2): 11287 (2)-1.75 x 5.5 M-L (0.22)
Allowable Bending Stress - Fb (psi): 2600	Shear (lbs): 713
	Moment (ft-lb): 936

VERSA-LAM

Allowable Shear Stress - Fv (psi): 285	EI (TL) k-in^2: 11788
Modulus of Elasticity - E (ksi): 2000	EI (LL) (k-in^2): 11287 (2)-1.75 x 5.5 V-L (0.21)
Allowable Bending Stress - Fb (psi): 2800	Shear (lbs): 713
	Moment (ft-lb): 936

NOTE: A LOAD DURATION FACTOR OF 1.0 IS USED FOR ALL BEAMS

**WOOD BEAM DESIGN
FOR UNIFORM LOADING CONDITIONS**

Project: OGDEN CITY GARAGE
Description: 16'-0" GARAGE DOOR HEADER

Date: 1/29/2016
Engineer: TAH

INPUT:

Length of Span - L (ft): **16.5**
Distance from Support to Calc. Shear - d (in): **7**

Roof Loads:

Trib. Length (ft): **3**
Snow Load (psf): **30**
Dead Load (psf): **17**

Floor Loads:

Trib. Length (ft): **0**
Live Load (psf): **40**
Dead Load (psf): **15**

Linear Loads:

Snow Load (plf): **0**
Live Load (plf): **0**
Dead Load (plf): **0**

Total Load Deflection Criteria (Span/Δ) - Δ: **240**
Live Load Deflection Criteria (Span/Δ) - Δ: **360**

Total Load (plf): **141 plf**
Total Live Load (plf): **90 plf**

Beam	DL= 420.75 lbs
Reactions:	LL= 742.5 lbs
	TL= 1163.3 lbs

OUTPUT:

DOUGLAS FIR-LARCH

Allowable Shear Stress - Fv (psi):	95	I (TL) (in^4): 178.14
Modulus of Elasticity - E (ksi):	1600	I (LL) (in^4): 170.56
Allowable Bending Stress - Fb (psi):	1313 2x4	A (in^2): 17.07
	1139 2x6	S (in^3) 2x4: 43.85
	1052 2x8	2x6: 50.55
	961 2x10	2x8: 54.73
	845 2x12	2x10: 59.92 3-2x10's (0.93)
		2x12: 68.14 3-2x12's (0.72)

GLUED-LAMINATED (24F-V4)

Allowable Shear Stress - Fv (psi):	190	I (TL) (in^4): 158.35
Modulus of Elasticity - E (ksi):	1800	I (LL) (in^4): 151.61 3.125 x 9 GLB (0.83)
Allowable Bending Stress - Fb (psi):	2400	A (in^2): 8.53 5.125 x 7.5 GLB (0.88)
		S (in^3): 23.99

MICRO-LAM

Allowable Shear Stress - Fv (psi):	285	EI (TL) k-in^2: 285025
Modulus of Elasticity - E (ksi):	1900	EI (LL) (k-in^2): 272897 (2)-1.75 x 9.5 M-L (0.6)
Allowable Bending Stress - Fb (psi):	2600	Shear (lbs): 1081 (3)-1.75 x 7.25 M-L (0.89)
		Moment (ft-lb): 4798

VERSA-LAM

Allowable Shear Stress - Fv (psi):	285	EI (TL) k-in^2: 285025
Modulus of Elasticity - E (ksi):	2000	EI (LL) (k-in^2): 272897 (2)-1.75 x 9.25 V-L (0.62)
Allowable Bending Stress - Fb (psi):	2800	Shear (lbs): 1081 (3)-1.75 x 7.25 V-L (0.85)
		Moment (ft-lb): 4798

NOTE: A LOAD DURATION FACTOR OF 1.0 IS USED FOR ALL BEAMS

IBC LATERAL ANALYSIS

Project: OGDEN CITY GARAGE
 Description: MAIN LATERAL

Date: 1/29/2016
 Engineer: Tom Hales

Seismic (V=2/3*Sms*I*W/R*(1/1.4))

$I = 1$
 $Sms = Fa * Ss = 1.6$ NOTE: Site Class D is assumed
 $R = 6$
 $2/3 * Sms * I / R = 0.1270$ (ASD)

Wind	90 mph	Basic Wind Speed	p_{s30}	p_s
Exposure = C		A =	14.4 psf	17.4 psf
Exp Coef = 1.21		B =	9.9 psf	12.0 psf
$K_{zt} = 1$		C =	11.5 psf	13.9 psf
$I_w = 1$		D =	7.9 psf	9.6 psf

roof height = 10.0 ft (top of wall to ridge)

Building Info.

		Veneer		
		Weights (pounds)	Veneer	Total Weights (pounds)
Wall Weight = 12 psf				
Roof Weight = 17 psf				
Seismic snow =				
Total Roof Weight = 17 psf	Wall	1320	0	10868
Floor to Roof Height = 10 ft	Wall	1320	0	10868
Building Width = 22 ft	Roof	8228		13508
Building Length = 22 ft			Vmid =	1715.3
Building Height = 20 ft				
a = 3.0 ft				

SHEARWALLS

Diaphragm Shears: (per side)	pounds	plf	
Walls perpendicular to building width:	690	31	
Walls perpendicular to building length:	690	31	
			350 plf
			req'd length
			2.0 ft
			2.0 ft

Mid-Ht Wall Shears: (per side)	pounds	plf	
Walls perpendicular to building width:	858	39	
Walls perpendicular to building length:	858	39	
			2.5 ft
			2.5 ft

USE 7/16" SHEATHING w/8d NAILS @ 6" o.c. G.F. 170plf

SHEARWALLS

Wind Shear Forces	pounds	plf	
Diaphragm Shears: (per side)			
Walls perpendicular to building width:	2033	92	CONTROLS=>
Walls perpendicular to building length:	2033	92	CONTROLS=>
			4.1 ft
			4.1 ft
Mid-Ht Wall Shears: (per side)			
Walls perpendicular to building width:	2033	92	CONTROLS=>
Walls perpendicular to building length:	2033	92	CONTROLS=>
			4.1 ft
			4.1 ft

USE 7/16" SHEATHING w/8d NAILS @ 6" o.c. G.F. 240plf

Note: Veneer is assumed to resist its own in-plane shear.

SHEAR & OVERTURNING ANALYSIS

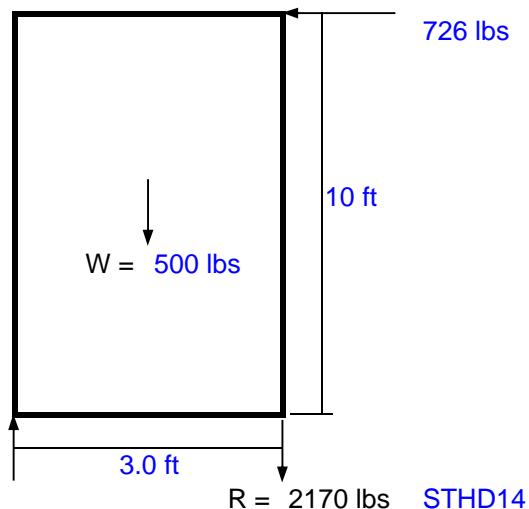
Project: OGDEN CITY GARAGE

Date: 1/29/2016

Description: MAIN LATERAL

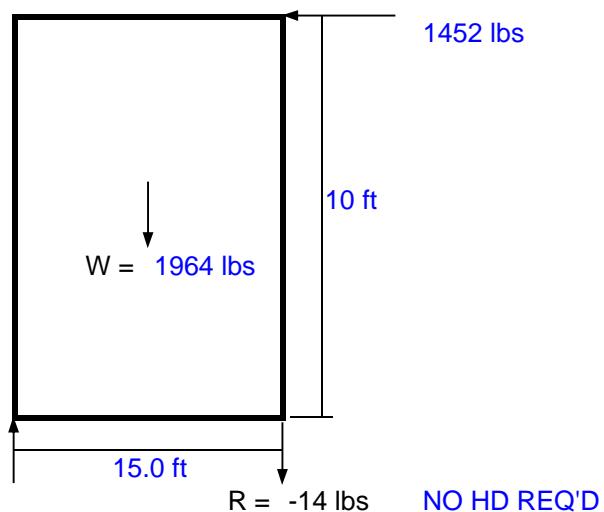
Engineer: Tom Hales

SHEAR WALL CHECK


Shear Wall Capacity: 350 plf 4"O.C. EDGE NAILING

Total Shear: 1452 lbs

Req'd Wall Lngth: 4 ft PLENTY OF WALL AVAILABLE


WALL OVERTURNING

Description: 3'-0" FRONT WALL PIECE

WALL OVERTURNING

Description: 15'-0" SIDE WALL PIECE

