

Tier 2 Structural Evaluation for the Forest Service Building

**Forest Service Building
507 25th Street, Ogden, UT 84401**

Prepared For:
Ogden City
2549 S Washington Blvd, Ogden, UT 84401

Prepared by
ARW Engineers

December 4, 2023

December 4, 2023

Ms. Sara Meess
Ogden City
2549 S Washington Blvd
Ogden, Utah

Re: Forest Service Building – Tier 2 Structural Evaluation
ARW Job # 23124

Dear Sara:

At your request, ARW Engineers has completed an ASCE 41-17 Tier 2 Structural Evaluation of the Forest Service Building located at 507 25th Street, Ogden, Utah (southeast corner of the intersection of Adams Avenue & 25th Street). The purpose of the evaluation is to determine, per the International Existing Building Code (IEBC), whether the existing structural lateral systems in the building are adequate to resist anticipated code-prescribed seismic forces. This report summarizes our evaluation process and findings and presents schematic structural upgrade concepts where appropriate. The findings in this report are based on the following:

- A Tier 1 Evaluation Report compiled by ARW Engineers and dated April 17, 2023
- A site investigation performed on October 11, 2023, by representatives of ARW Engineers
- An investigation of existing building drawings provided to ARW by Sanders Associates Architects on October 2, 2023

General Structural Description

The Forest Service Building was designed in the early 1930's by the same architect who designed Ogden High School and the Ogden Municipal Building, which are two other historic buildings located in Ogden. The Forest Service Building consists of four above-ground floor levels and one basement level. The footprint of the building is roughly square with approximate dimensions of 100-ft by 100-ft.

Above ground, Levels 1 and 2 are square in aspect ratio and occupy the entire footprint of the building, with an approximate area of 10,000 square-feet each. Levels 3 & 4 are U-shaped, with the opening facing to the south, and have an approximate area of 8,000 square-feet each. A three-story penthouse beginning at the main roof level is located centrally on the roof, with a tall brick chimney located at the southeast corner of the building.

The basement is partially below exterior grade, with ground level access on the south side. A wing of the basement is located at the southeast corner outside the main footprint of the building, with a parking area on top.

Gravity System Description

The summary provided in this section describes the elements that make up the gravity system, which are the structural elements involved in sustaining the floor and roof loads. The gravity system appears to have been in place for the lifetime of the building and has likely seen close to its design gravity loading within that time frame.

The floors consist of reinforced concrete pan-joists. The pan-joists are approximately 10 inches wide by 12 inches deep (measured from the bottom face of the slab). The width of the pan-joists tapers down to

six inches at the midspan of each joist. The slab is three inches thick and is poured integral with the joists. Except for one area on Level 1, the pan-joists run east-west and are supported by reinforced concrete beams.

The reinforced concrete beams are approximately 12 inches wide by 21 inches deep (measured from the bottom face of the slab) and generally run north-south perpendicular to the pan-joists. The beams also appear to be poured integral with the pan joists, suggesting that the floor and roof systems are cast-in-place. The reinforced concrete beams are supported by 18-inch by 18-inch reinforced concrete columns that run continuously from the foundations to the roof. In addition to running north-south along each column line, the reinforced concrete beams also span from column to column along the perimeter of each level, forming a reinforced concrete frame.

Lateral System Description

The summary provided in this section describes the existing lateral system, which comprises the shear walls and diaphragms (floors & roof) that resist lateral (seismic) forces.

The shear walls are made up of unreinforced brick walls that infill the reinforced concrete frames around the perimeter of each level. The brick infill walls are approximately eight inches thick (i.e., two-wythe) with one layer of approximately four-inch-thick brick or terra cotta veneer. The veneer bypasses the exterior face of the reinforced concrete frames.

Door and window openings are present in nearly all unreinforced brick infill walls on the exterior of the building. Because of this, most sections of unreinforced brick wall between each opening (i.e. wall piers) provide negligible lateral force resistance. Most of the lateral force is resisted by the longer wall piers located at each corner and about 12 to 15 feet from each corner.

The diaphragms of each floor transfer the inertial forces of each level to the shear walls below. The diaphragms are made up of the slab section of the reinforced concrete pan-joists described in the Gravity System Description above.

Notably, Level 2 and the Main Roof/Penthouse level are currently the lower terminuses for select shear walls descending from levels above. The north, east, and west penthouse shear walls terminate at the Main Roof diaphragm, which then transfers the penthouse shear wall forces to the Level 4 shear walls along the perimeter of the Main Roof/Penthouse level. Similarly, the interior U-shaped walls of Levels 2, 3, and 4 terminate at the Level 2 diaphragm, which then transfers the upper-level forces to the exterior Level 1 shear walls.

Evaluation Procedure

Chapter 12 of the International Existing Building Code (IEBC) addresses the repair, alteration, relocation and change of occupancy of Historic Buildings:

- A historic building undergoing alterations or change of occupancy shall be investigated and evaluated. For buildings assigned to Seismic Design Category D, E or F, a structural evaluation describing, at a minimum, the vertical and horizontal elements of the lateral force-resisting system and any strengths or weaknesses therein shall be prepared. Additionally, the report shall describe each feature that is not in compliance with these provisions and shall demonstrate how the intent of these provisions is complied with in providing an equivalent level of safety. (IEBC 1201.2)
- Repairs to any portion of the historic building or structure shall be permitted with original or like materials and original methods of construction. (IEBC 1202.1)
- Historic buildings undergoing a change of occupancy which results in a building being assigned to a higher risk category shall satisfy the requirements of Section 1613 of the International Building Code for the new risk category using full seismic forces. (IEBC 1006.3)

Based on ARW's assessment during the October 11 site visit, the most recent building occupancy type was conventional office space. If the decision is made to increase occupancy risk per IEBC Chapter 12, this will trigger mandatory seismic upgrades for the structure.

ASCE 41-17 Tier 2 procedures were used to conduct an analysis of the building to determine potential structural deficiencies. The performance objective was Life Safety (LS) for the Basic Safety Earthquake 1E (BSE-1E), and Collapse Prevention (CP) for the Basic Safety Earthquake 2E (BSE-2E). These design earthquakes correspond to a 20% probability of occurrence in 50 years for BSE-1E, and a 5% probability of occurrence in 50 years for BSE-2E, based on available site-specific data. Schematic structural upgrade concepts were developed using the Equivalent Lateral Force procedure in ASCE 7-16, using a response modification factor (R) of 5 for new structural concrete shear walls, and an R of 8 for buckling-restrained braced frames (BRBF's).

Structural Deficiencies

The following is a summary list of structural deficiencies noted in the building:

1. Main Roof/Penthouse Level diaphragm
 - This diaphragm transfers forces from the penthouse walls above to the Level 4 walls below. Per refer to ASCE 41-17, Section 7.4.1.3.4, diaphragms of this type are force-controlled. By analysis, the force-controlled diaphragm is not adequate to transfer forces from the shear walls above to the shear walls below.
2. Level 2 diaphragm
 - This diaphragm transfers forces from the Level 2, Level 3, & Level 4 walls above to the Level 1 walls below. Per refer to ASCE 41-17, Section 7.4.1.3.4, diaphragms of this type are force-controlled. By analysis, the force-controlled diaphragm is not adequate to transfer forces from the shear walls above to the shear walls below.
3. Unreinforced brick infill shear walls
 - The unreinforced brick infill shear walls at each level are not adequate to transfer lateral forces to the foundations. This is a hazard due to the potential for an earthquake to crack and/or crush the existing shear wall system, amplifying the potential for lateral movement.
4. Unreinforced brick infill walls (out-of-plane)
 - The unreinforced brick infill walls are not anchored to the reinforced concrete frames. This is a hazard due to the potential for the infill brick walls to dislodge from the reinforced concrete frames and fall to the inside or outside of the building.
5. Chimney at southeast corner
 - The chimney is constructed of unreinforced brick and rises nearly 26 feet above the Main Roof/Penthouse level, with a base diameter of about 5.5 feet. There is potential for the unreinforced chimney walls to buckle and fall to the ground below during a seismic event.
6. Unreinforced brick/masonry interior partition walls
 - Interior brick or masonry partition (non-structural) walls are located at various locations throughout the building from the basement to the Mechanical Room in the penthouse. These are hazardous due to the potential for the walls to topple during a seismic event.
7. Miscellaneous penthouse deficiencies
 - The unreinforced brick infill shear walls at each penthouse level are not adequate to transfer lateral forces to the foundations. This is a hazard due to the potential for an earthquake to crack and/or crush the existing shear wall system, amplifying the potential for lateral movement.
 - The greenhouse roof structure is not braced adequately. Additionally, the roof structure is not attached adequately to the support lintel.

Recommended Structural Upgrades

The following is a summary list of schematic structural upgrade concepts corresponding to the above list of structural deficiencies:

1. Main Roof/Penthouse Level diaphragm
 - Option 1: Install a vertical lateral force resisting system directly below the lateral force resisting system above. This new lateral force resisting system can be a new concrete shear wall, masonry wall, or braced frames. The new lateral force resisting system should be continuous through all levels from the Main Roof/Penthouse Level down to the footing & foundation system. Executing this option will remove the requirement for this diaphragm to be force-controlled, likely reducing or removing the need to upgrade the diaphragm strength.
 - Option 2: Upgrade the diaphragm strength by installing fiber-reinforced polymer (FRP) wrap over the surface of the entire diaphragm. FRP applied to concrete is a useful way to increase the diaphragm strength; although, this would require removing all roof surfaces down to the structural concrete to apply the FRP.
 - Refer to Appendix B for a schematic representation of the options described above.
2. Level 2 diaphragm
 - Option 1: Install a vertical lateral force resisting system directly below the lateral force resisting system above. This new lateral force resisting system can be a new concrete shear wall, masonry wall, or braced frames. The new lateral force resisting system should be continuous through all levels from Level 2 down to the footing & foundation system. Executing this option will remove the requirement for this diaphragm to be force-controlled, likely reducing or removing the need to upgrade the diaphragm strength.
 - Option 2: Upgrade the diaphragm strength by installing fiber-reinforced polymer (FRP) wrap over the surface of the entire diaphragm. FRP applied to concrete is a useful way to increase the diaphragm strength; although, this would require removing all floor surfaces down to the structural concrete to apply the FRP. Furthermore, additional shear walls around the perimeter of the diaphragm would likely be required down to the footing & foundations.
 - Refer to Appendix B for a schematic representation of the options described above.
3. Unreinforced brick infill shear walls
 - Option 1: Install new concrete and/or shotcrete shear walls strategically between columns. This new shear wall will be designed to take all the lateral force from the shear walls and diaphragms above and transfer it to the footings & foundations below. The new shear walls will be installed both at exterior wall locations and between interior columns. Installing the shear wall between existing columns is ideal because the existing columns and the associated footings can be utilized to resist overturning forces using the self-weight of the building. If existing columns are not used in this way, it is likely that additional footing & foundation work will be needed to resist the overturning forces in the shear wall. Additionally, new concrete and/or shotcrete shear walls are ideal because they have similar stiffness properties as the existing unreinforced brick infill walls. Please refer to Appendix B for a schematic representation of the options described in this paragraph.
 - Option 2: Install new buckling-restrained braced frames (BRBF's). Installing BRBF's has the advantage of a more ductile system that will reduce the code-required design lateral force. However, this system is also considerably less stiff than the existing unreinforced brick infill walls. This means that the amount of movement required to engage the BRBF's is larger than the allowed amount of movement that can potentially crack and fail the unreinforced brick infill walls. To avoid this, deformation-compatibility requirements will need to be met, or the BRBF's will need to be stiffened significantly beyond what is required by the code for strength.
4. Unreinforced brick infill walls (out-of-plane)
 - Install new steel plates at the top and bottom of the existing unreinforced brick infill walls to anchor them to the concrete beam and floor slabs. Please refer to Appendix B for a schematic representation of the options described in this paragraph.

5. Chimney at southeast corner
 - Option 1: Reinforce the chimney walls. This can be done in a couple of ways. Core-drilled holes can be drilled vertically from the top of the chimney and filled with grout and steel reinforcing. Alternatively, a steel-reinforced circular shotcrete wall can be constructed inside of the chimney from the footing and foundations to the top of the chimney.
 - Option 2: The aspect ratio (i.e., ratio of the height to the diameter of the chimney) can be reduced, either by adding additional reinforced brick walls to the exterior of the chimney or removing a section of the chimney down to a lower elevation.
6. Unreinforced brick/masonry interior partition walls (out-of-plane)
 - Install new steel plates at the top of the partition walls to anchor them to the pan-joist slabs perpendicular to the plane of the wall.
7. Miscellaneous penthouse deficiencies
 - Install new concrete and/or shotcrete shear walls at all penthouse levels. Where possible, align the new shear walls vertically so no additional lateral bracing is required.
 - Provide additional steel bracing of the greenhouse roof structure. Provide new attachments of the roof structure to the concrete/masonry lintels.

Appendices

Appendices to this letter have been included as part of this report:

- Appendix A: Site investigation photos (taken during the October 11 investigation)
- Appendix B: Schematic structural upgrade concept plans and detail sketches
- Appendix C: Tier 2 calculations
- Appendix D: Tier 1 report and checklists

Thank you for the opportunity to report these findings and recommendations to you. Please do not hesitate to reach out if you have any questions regarding the information in this report.

Best Regards:

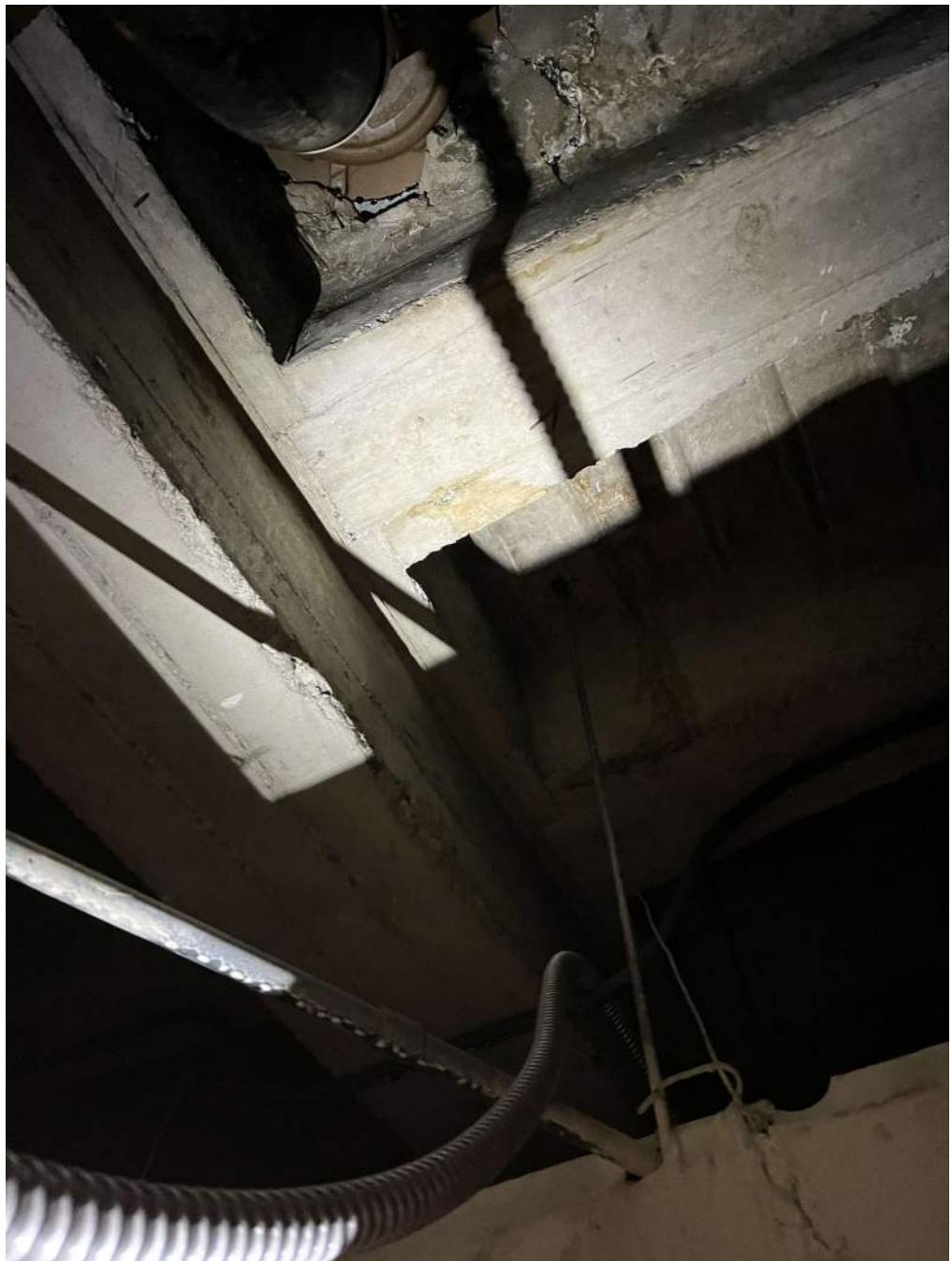
Tim Price
Structural Designer

Troy M. Dye, S.E.
Principal

23124_tier2ltr_20231204.docx

APPENDIX A

SITE INVESTIGATION PHOTOS


**Photo 1 – View of unreinforced masonry chimney from southeast corner of building.
Picture is taken from parking surface on top of basement wing.**

**Photo 2 – View of building from southwest corner.
Note the walk-out basement and basement wing.**

Photo 3 – View of three-story penthouse from Main Roof.

Photo 4 – View of typical pan-joist at Levels 2, 3, 4, and Main Roof/Penthouse.

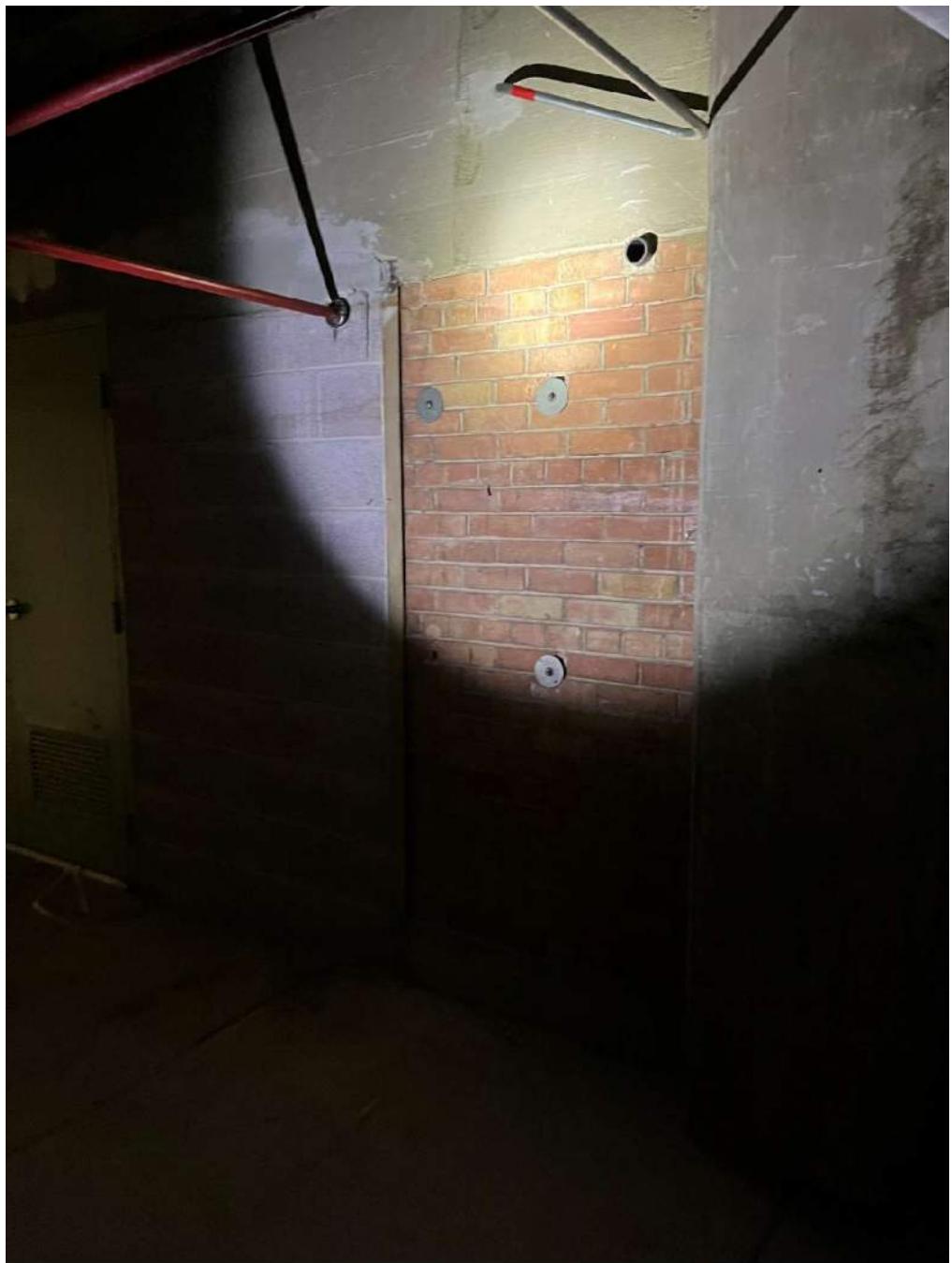
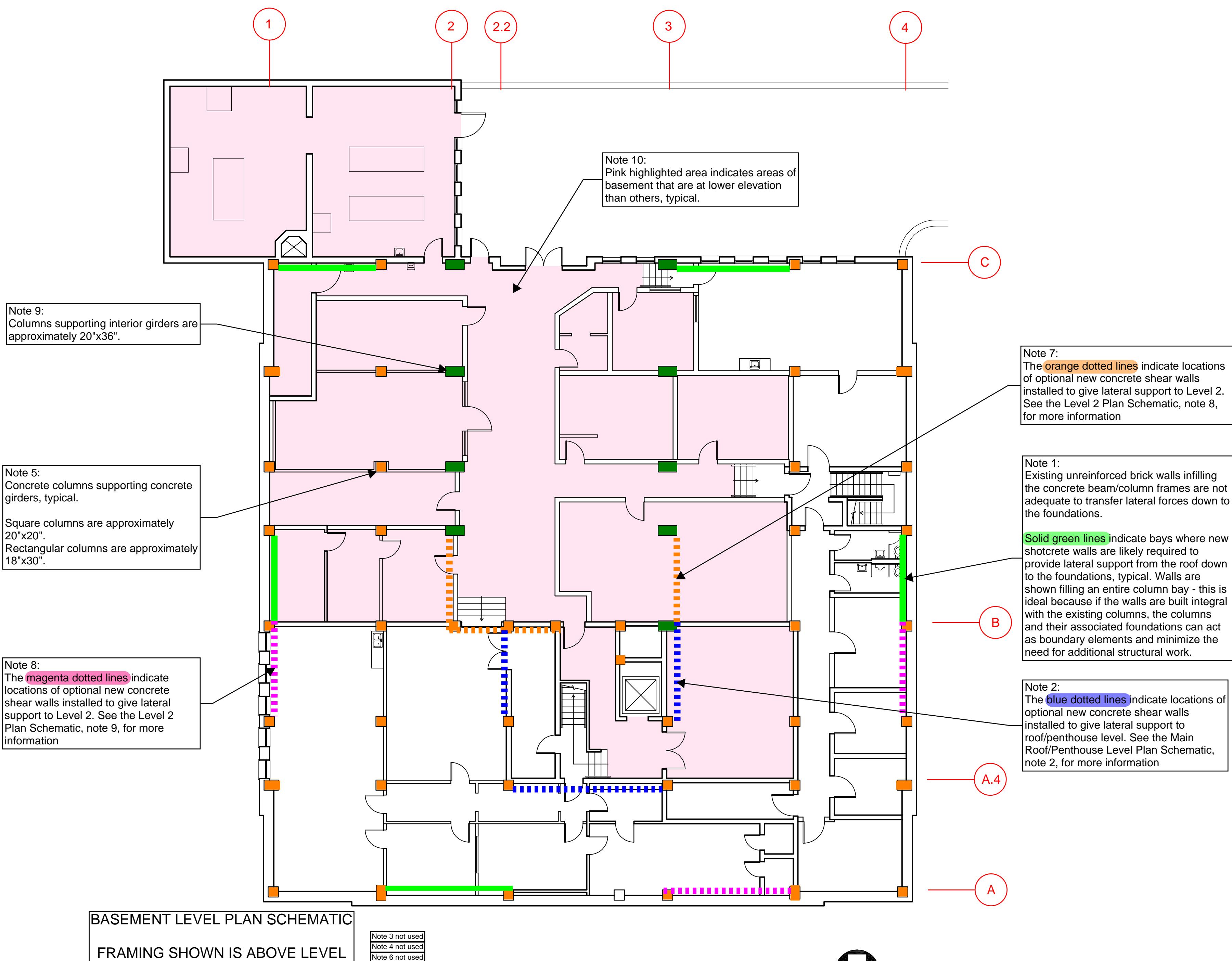
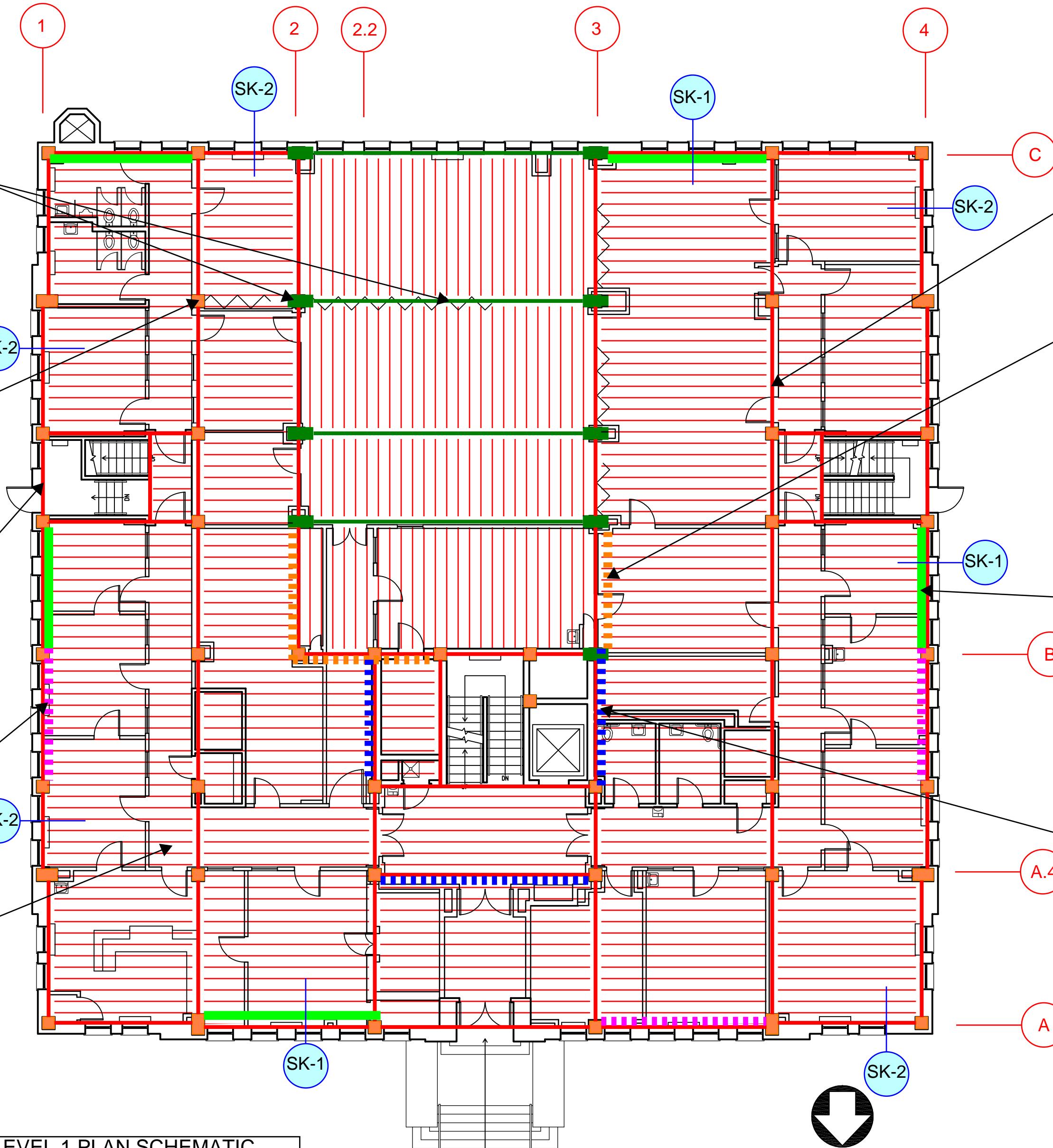
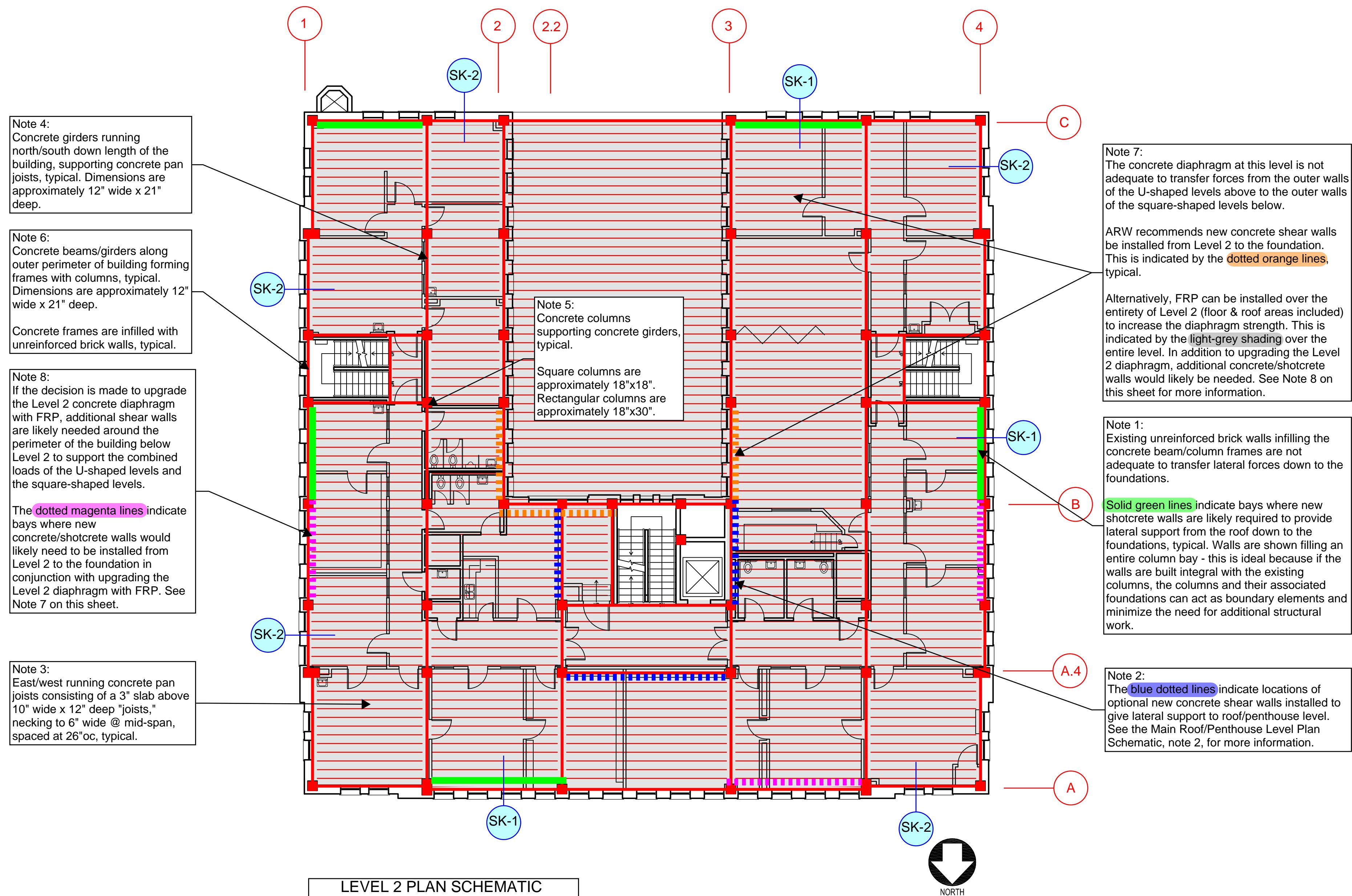
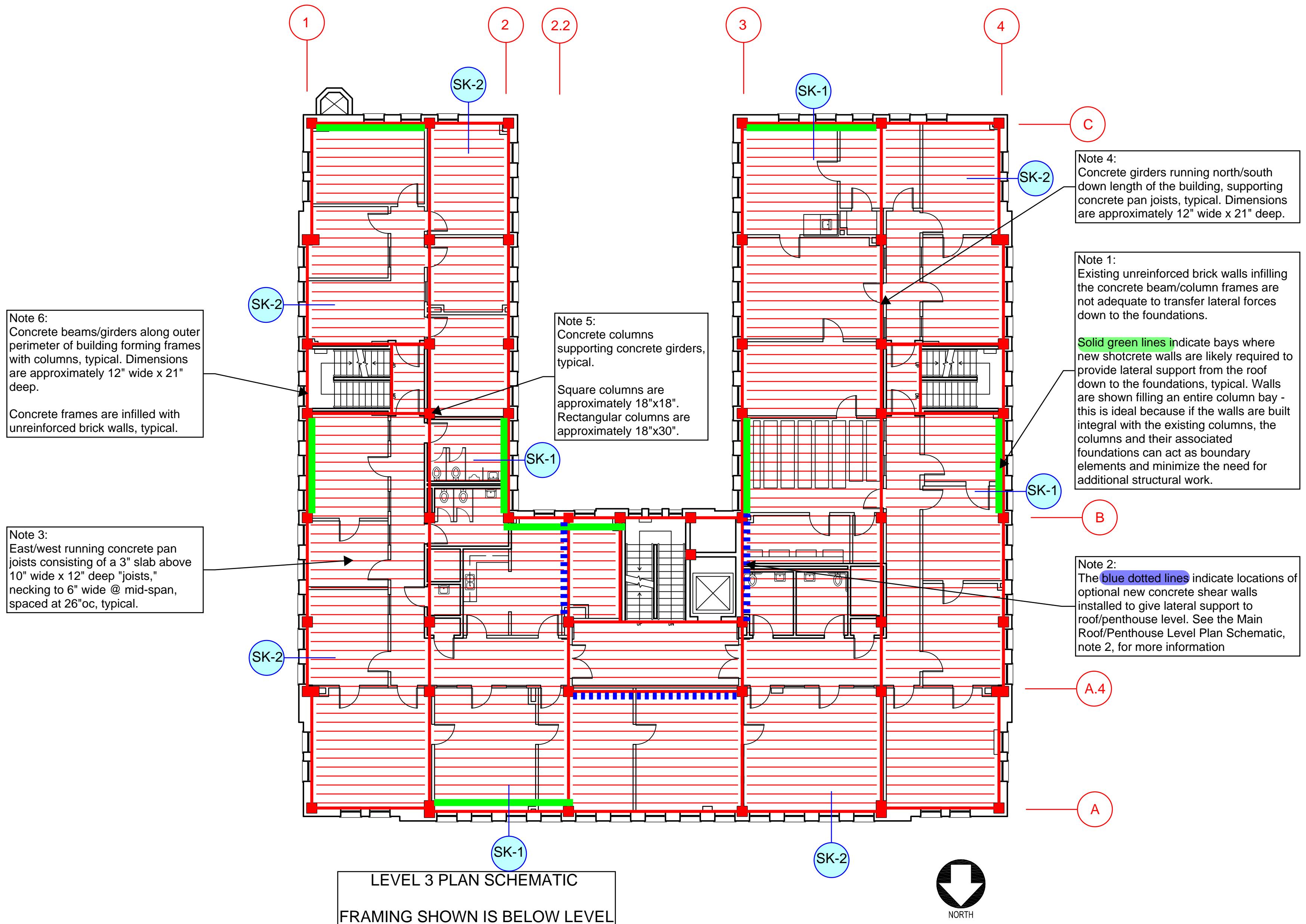

Photo 5 – View of Level 1 pan-joists from basement.

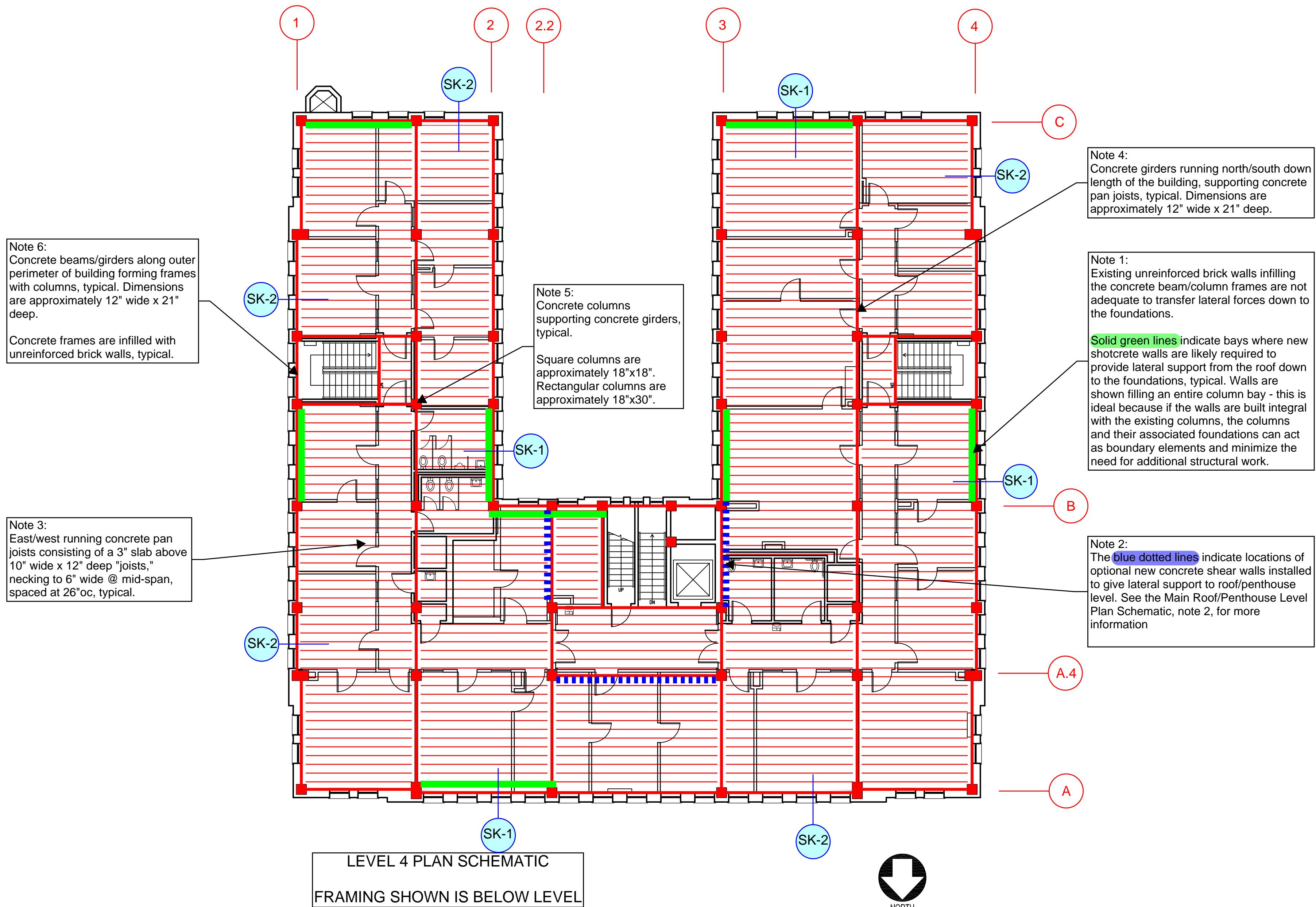
Photo 6 – Greenhouse roof structure attachment to lintel

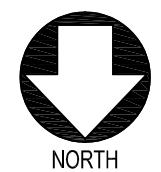
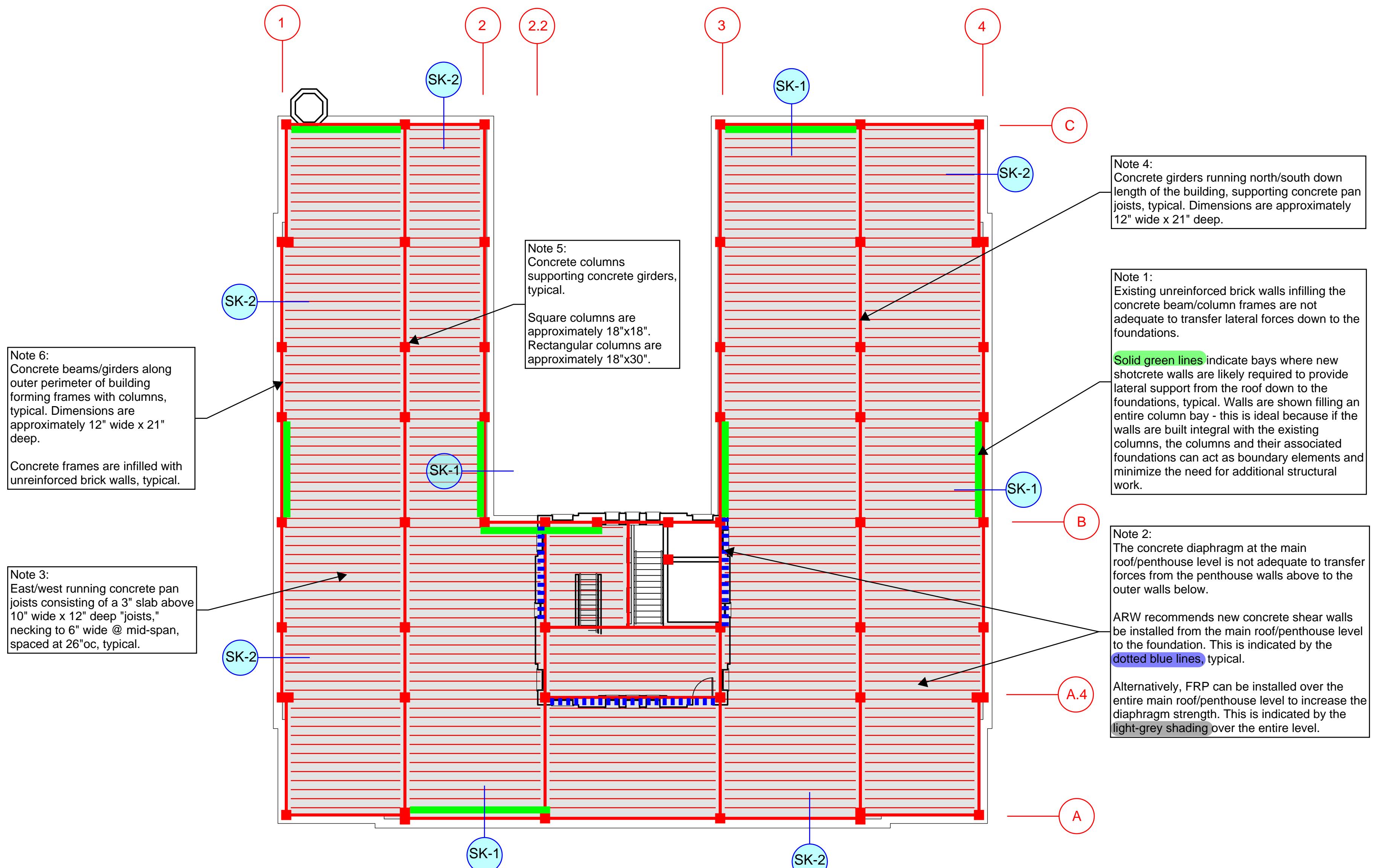



Photo 7 – View of greenhouse roof structure.

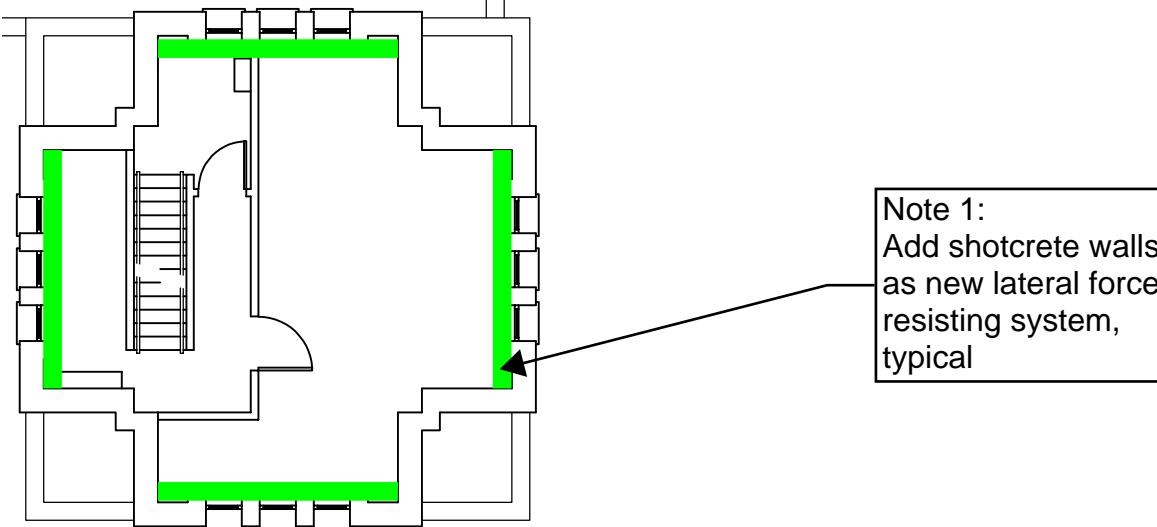

Photo 8 – View of interior partition walls.


APPENDIX B
SCHEMATIC STRUCTURAL
UPGRADE PLANS & DETAIL
SKETCHES

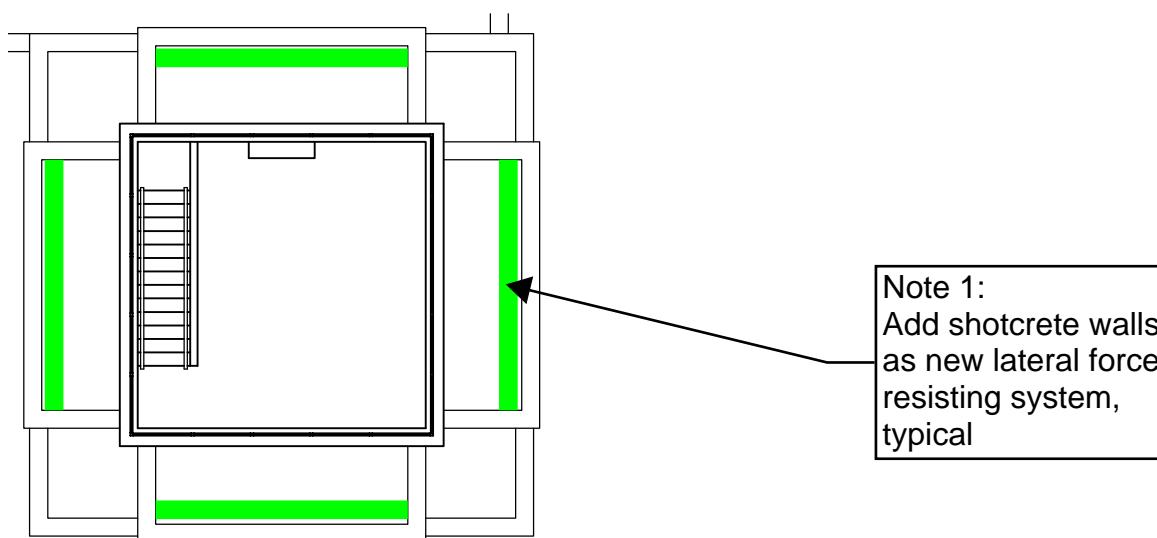


LEVEL 1 PLAN SCHEMATIC
FRAMING SHOWN IS BELOW LEVEL

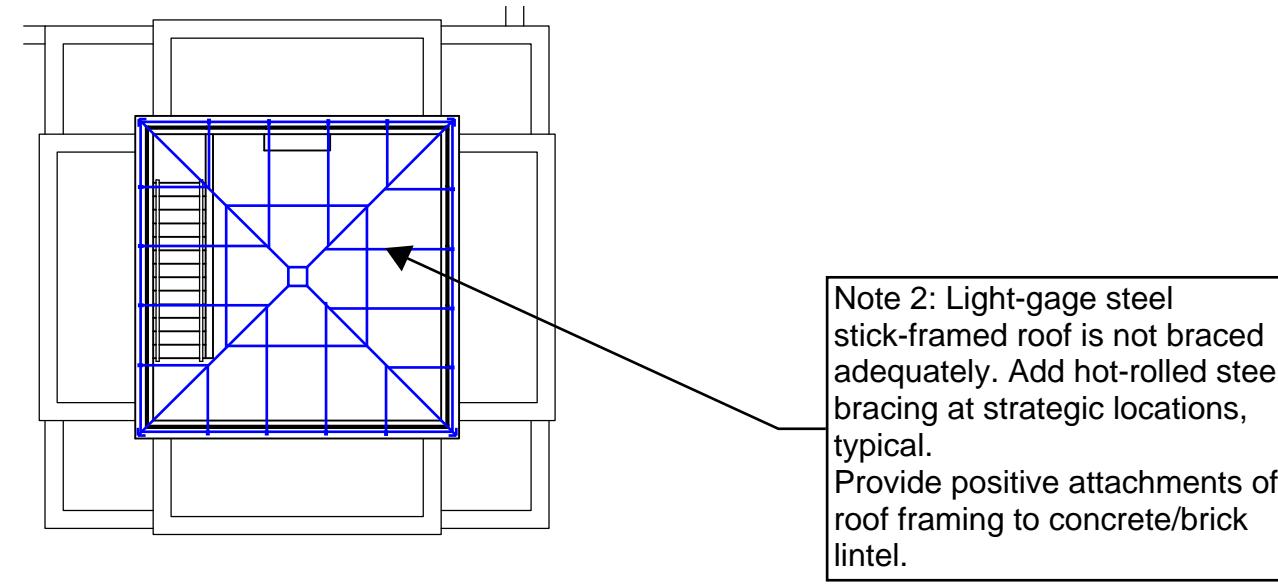


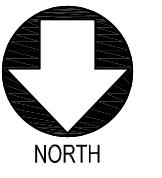
MECHANICAL ROOM LEVEL PLAN
SCHEMATIC


FRAMING SHOWN IS BELOW LEVEL

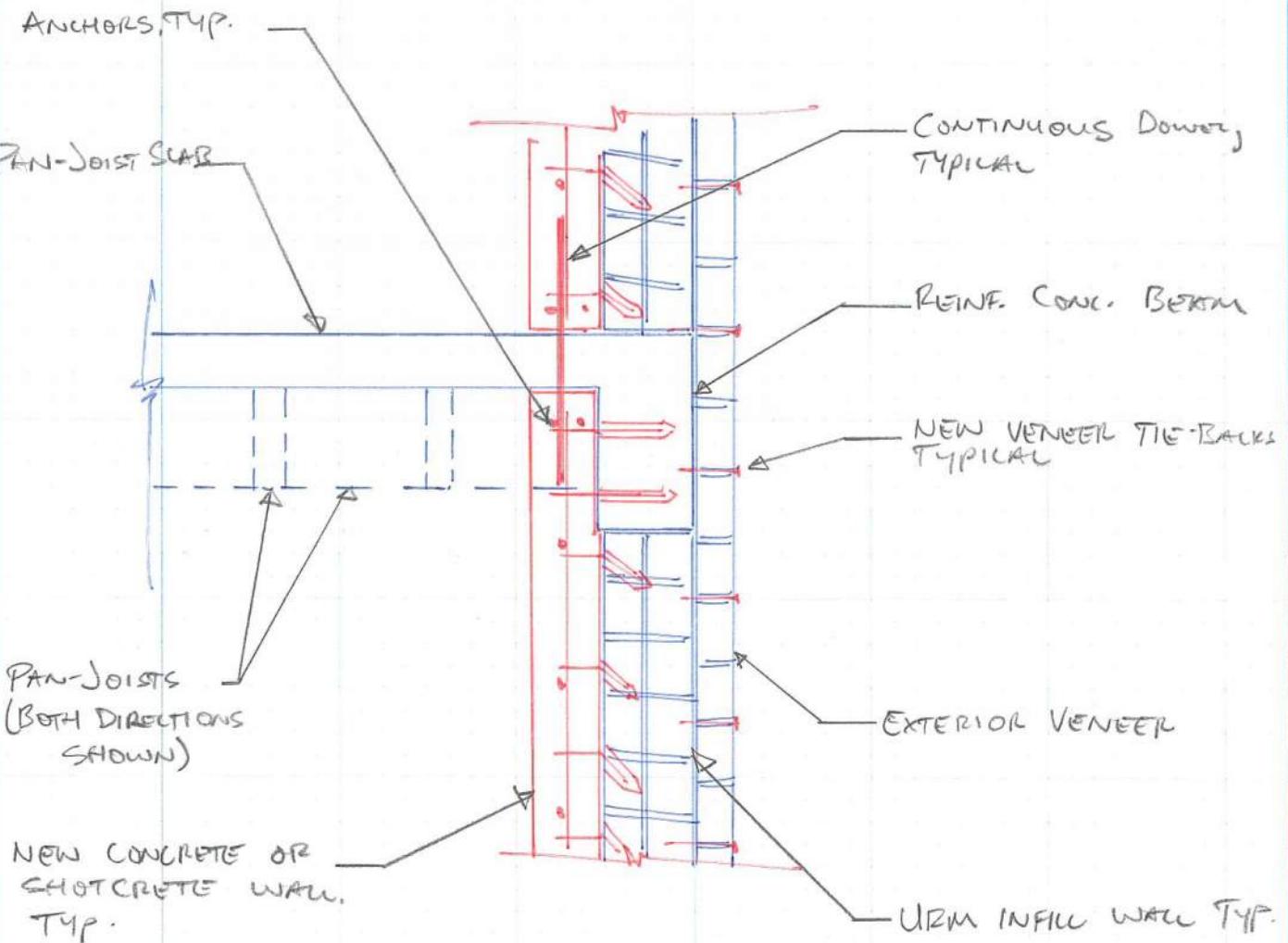
Note 1:
Add shotcrete walls
as new lateral force
resisting system,
typical

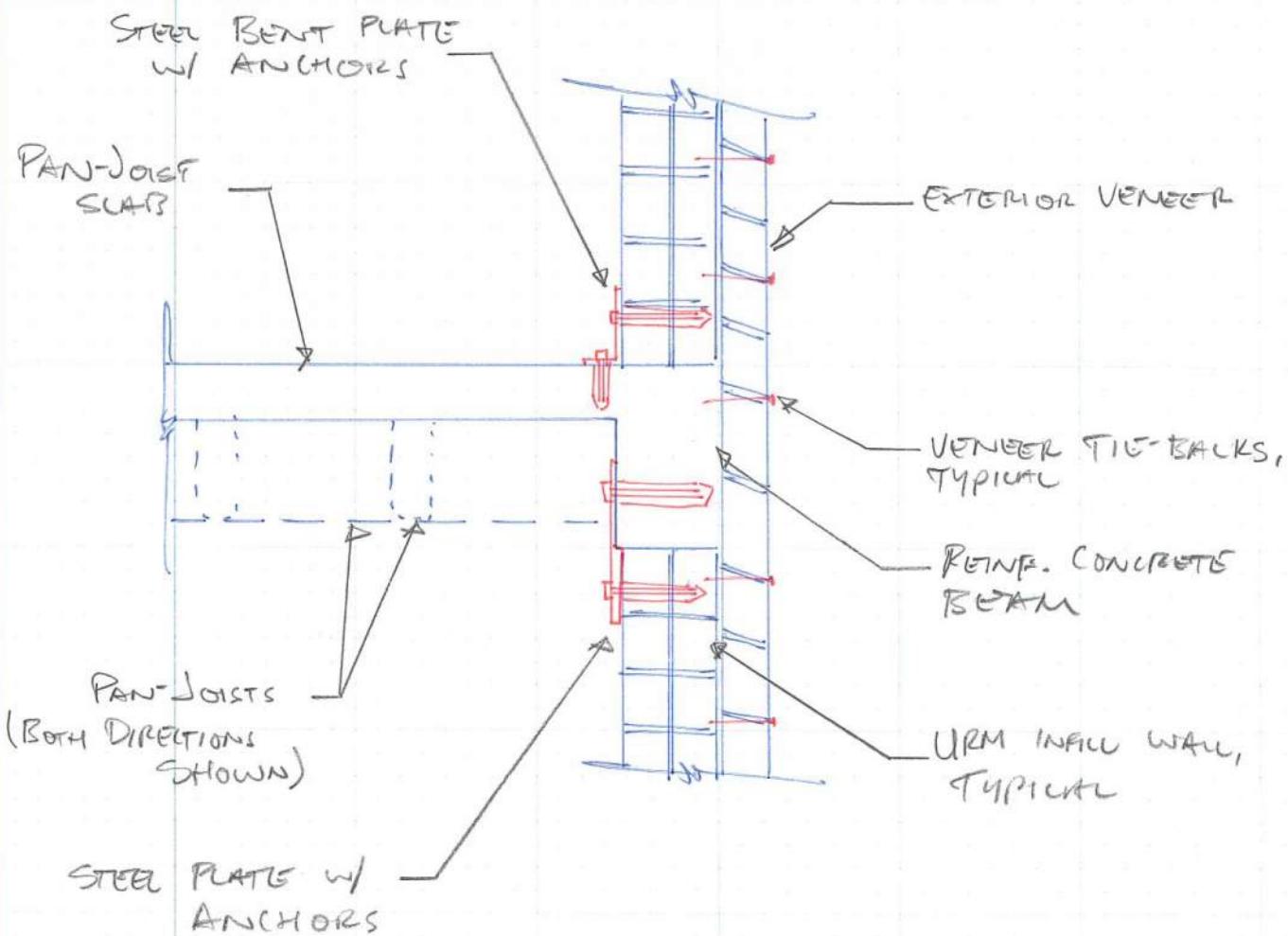
GREENHOUSE LEVEL PLAN
SCHEMATIC


FRAMING SHOWN IS BELOW LEVEL


Note 1:
Add shotcrete walls
as new lateral force
resisting system,
typical

GREENHOUSE ROOF PLAN
SCHEMATIC


FRAMING SHOWN IS BELOW LEVEL


Note 2: Light-gage steel
stick-framed roof is not braced
adequately. Add hot-rolled steel
bracing at strategic locations,
typical.
Provide positive attachments of
roof framing to concrete/brick
lintel.

SKETCH 1

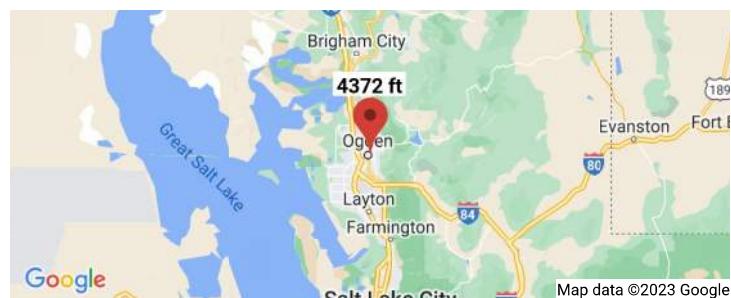
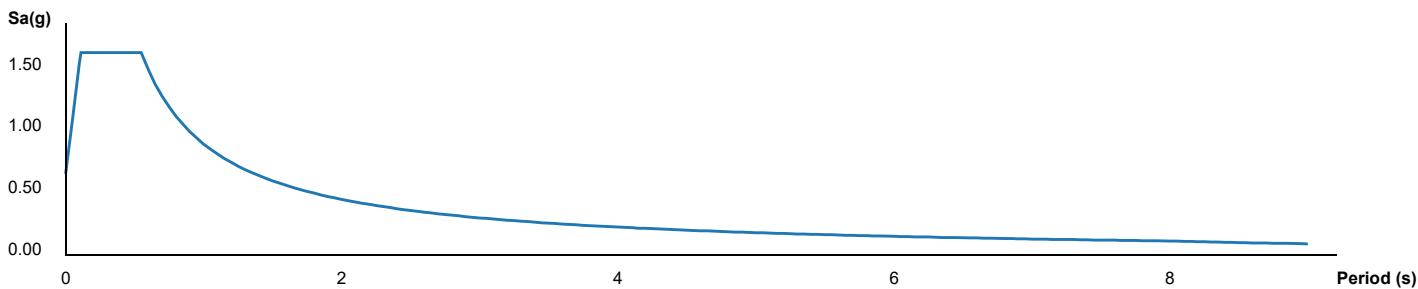
SKETCH 2

APPENDIX C

TIER 2 CALCULATIONS

⚠ This is a beta release of the new ATC Hazards by Location website. Please [contact us](#) with feedback.

ⓘ The ATC Hazards by Location website will not be updated to support ASCE 7-22. [Find out why.](#)



Hazards by Location

Search Information

Address: 507 25th St, Ogden, UT 84401, USA
Coordinates: 41.220388, -111.9671722
Elevation: 4372 ft
Timestamp: 2023-10-26T01:31:58.412Z
Hazard Type: Seismic
Reference Document: ASCE41-17
Site Class: D-default

Custom Probability:

Horizontal Response Spectrum - Hazard Level BSE-2N

Hazard Level BSE-2N

Name	Value	Description
SsUH	1.582	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
CR _S	0.863	Coefficient of risk (0.2s)
SsRT	1.364	Probabilistic risk-targeted ground motion (0.2s)
SsD	2.968	Factored deterministic acceleration value (0.2s)
S _s	1.364	MCE _R ground motion (period=0.2s)
F _a	1.2	Site amplification factor at 0.2s
S _x	1.637	Site modified spectral response (0.2s)
S1UH	0.566	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
CR ₁	0.879	Coefficient of risk (1.0s)
S1RT	0.498	Probabilistic risk-targeted ground motion (1.0s)
S1D	1.255	Factored deterministic acceleration value (1.0s)
S ₁	0.498	MCE _R ground motion (period=1.0s)
F _v	1.802	Site amplification factor at 1.0s
S _{x1}	0.897	Site modified spectral response (1.0s)

Hazard Level BSE-1N

Name	Value	Description
S _x	1.091	Site modified spectral response (0.2s)
S _{x1}	0.598	Site modified spectral response (1.0s)

Hazard Level BSE-2E

Name	Value	Description
S _s	0.867	MCE _R ground motion (period=0.2s)
F _a	1.2	Site amplification factor at 0.2s
S _{xS}	1.041	Site modified spectral response (0.2s)
S ₁	0.3	MCE _R ground motion (period=1.0s)
F _v	2.001	Site amplification factor at 1.0s
S _{x1}	0.599	Site modified spectral response (1.0s)

Hazard Level BSE-1E

Name	Value	Description
S _s	0.254	MCE _R ground motion (period=0.2s)
F _a	1.597	Site amplification factor at 0.2s
S _{xS}	0.405	Site modified spectral response (0.2s)
S ₁	0.088	MCE _R ground motion (period=1.0s)
F _v	2.4	Site amplification factor at 1.0s
S _{x1}	0.21	Site modified spectral response (1.0s)

T_L Data

Name	Value	Description
T _L	8	Long-period transition period (s)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. [Find out why.](#)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey [Seismic Design Web Services](#).

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

08-Nov-23

ASCE 41-17 SEISMIC DESIGN/EVALUATION OF LATERAL SYSTEM

Version Date: June 30, 2020

Updated by: Steven Petroff, SE

Reviewed by: Scott Porter, SE

Building Risk Category
Performance Level- II
Seismic Hazard Level- Life Safety

BUILDING LOCATION: Forest Service Building
507 E 25th St, Ogden, UT

JOB #: 23124
PREPARED BY: TDP

BSE-1E (20% in 50yr)

Performance Level- Collapse Prevention
Seismic Hazard Level- BSE-2E (5% in 50yr)

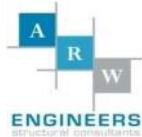
$S_s = 0.254$

$S_s = 0.867$

$S_1 = 0.088$

$S_1 = 0.3$

$F_a = 1.597$


$F_a = 1.2$

$F_v = 2.4$

$F_v = 2.001$

See ASCE 41-17 Section 2.3.1 for Structural Performance Levels and Ranges

Largest Demand to Capacity Ratio for the overall system
 $DCR_{MAX} = 1.00$ $DCR_{MAX} = 1.00$

ASCE 41-17 PSUEDO LATERAL FORCE, LINEAR STATIC PROCEDURE (LSP)

Version Date: June 30, 2020

08-Nov-23

JOB TITLE: Forest Service Building
BUILDING LOCATION: 507 E 25th St, Ogden, UT

JOB #: 23124
PREPARED BY: TDP

ASCE 41-17 Psuedo Lateral Force Per Linear Static Procedure

Building Period (ASCE 41-17 Section 7.4.1.2)

Building Height (H): 35.0 ft

Period Coefficient (C_t): 0.020

Height Coefficient (β): 0.75

Bldg. Period (T): 0.29 sec

Mapped Acceleration Factors (ASCE 41-17 Section 2.4)

BSE-1E (20% in 50yr)

S_s = 0.25

S₁ = 0.09

F_a = 1.60

F_v = 2.40

BSE-2E (5% in 50yr)

S_s = 0.87

S₁ = 0.30

F_a = 1.20

F_v = 2.00

Base Shear Coefficient (BSE-1E (20% in 50yr) - ASCE 41-17 Section 7.4.1)

Response Acceleration Parameters: (ASCE 41-17 Section 2.4.1.6)

$$S_{xs} = S_s * F_a = 0.41$$

$$S_{x1} = S_1 * F_v = 0.21$$

$$T_s = \frac{S_{x1}}{S_{xs}} \quad T_s = 0.52 \text{ sec}$$

$$T_{o'} = \frac{S_{x1}}{S_{xs}} \quad T_{o'} = 0.10 \text{ sec}$$

Effective viscous damping ratio (Section 2.4.1.7.1) $\beta = 0.05$

$$B_1 = \frac{4}{5.6 - \ln(100 * \beta)} \quad B_1 = 1.00$$

$$S_a = 0.40$$

BSE-1E (20% in 50yr) Psuedo Lateral Force - Section 7.4.1.3.1

Modification Factors:

DCR_{max} = 1.00

Effective mass factor

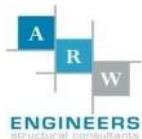
C_m = 1 (ASCE 41-17 Table 7-4)

Site Class Factor

a = 60 (Section 7.4.1.3.1)

For periods greater than 1.0 s, C₁ = 1.0.

$$\mu_{strength} = \frac{DCR_{max}}{1.5} C_m \geq 1.0 \quad \mu_{strength} = 1.00$$


$$C_1 = 1 + \frac{\mu_{strength} - 1}{aT_e^2} \quad C_1 = 1.00$$

For periods greater than 0.7 s, C₂ = 1.0;

$$C_2 = 1 + \frac{1}{800} \left(\frac{\mu_{strength} - 1}{T_e} \right)^2 \quad C_2 = 1.00$$

BSE-1E (20% in 50yr) Psuedo Lateral Force Coefficient

$$V = C_1 * C_2 * C_m * S_a * W \quad V = 0.40 \times W$$

ASCE 41-17 PSUEDO LATERAL FORCE (CONT'D)

Version Date: June 30, 2020

08-Nov-23
2:32 PM

JOB TITLE: Forest Service Building
BUILDING LOCATION: 507 E 25th St, Ogden, UT

JOB #: 23124
PREPARED BY: TDP

Base Shear Coefficient (BSE-2E (5% in 50yr) - ASCE 41-17 Section 7.4.1)

Response Acceleration Parameters: (ASCE 41-17 Section 2.4.1.6)

$$\begin{aligned} S_{xs} = S_s * F_a &= 1.04 & T_s &= \frac{S_{xl}}{S} & T_s &= 0.58 \text{ sec} \\ S_{xi} = S_i * F_v &= 0.60 & T_o &= 0.2 * T_s & T_o &= 0.12 \text{ sec} \end{aligned}$$

Effective viscous damping ratio (Section 2.4.1.7.1) $\beta = 0.05$

$$B_1 = \frac{4}{5.6 - \ln(100 * \beta)} \quad B_1 = 1.00 \quad \text{See Section 1.6.1.5 for Sa calculation) } \quad S_a = 1.04$$

BSE-2E (5% in 50yr) Psuedo Lateral Force - Section 7.4.1.3.1

Modification Factors:

$$\begin{aligned} DCR_{max} &= 1.00 & \text{Effective mass factor } C_m &= 1 & \text{(ASCE 41-17 Table 7-4)} \\ & & \text{Site Class Factor } a &= 60 & \text{(Section 7.4.1.3.1)} \end{aligned}$$

For periods greater than 1.0 s, $C_1 = 1.0$.

$$\mu_{strength} = \frac{DCR_{max}}{1.5} C_m \geq 1.0 \quad \mu_{strength} = 1.00 \quad C_1 = 1 + \frac{\mu_{strength} - 1}{aT_e^2} \quad C_1 = 1.00$$

For periods greater than 0.7 s, $C_2 = 1.0$;

$$C_2 = 1 + \frac{1}{800} \left(\frac{\mu_{strength} - 1}{T_e} \right)^2 \quad C_2 = 1.00$$

BSE-2E (5% in 50yr) Psuedo Lateral Force Coefficient

$$V = C_1 * C_2 * C_m * S_a * W \quad V = 1.04 \times W$$

	Diaph. (kips)	+N/S Only (kips)	+E/W Only (kips)	Total N/S Seis. Wt. (kips)	Total E/W Seis. Wt. (kips)	h (ft)
Penthouse/Main Roof	Greenhouse	21.26	16.23	16.23	37.49	83.0000
	Mechanical	29.51	14.68	14.68	44.19	73.5833
	Level 4	625.13	70.32	109.98	695.45	735.11
	Level 3	615.75	57.44	89.83	673.19	705.58
	Level 2	771.00	66.48	81.80	837.48	852.80
	Level 1	771.00	132.10	173.33	903.10	944.33
				3856.80	4013.69	

$C_s =$ 1.000

Indicates vertical distributions correspond to Effective Seismic Weight Level forces

N/S Vertical Distribution (ASCE 7-16 Section 12.8.3)			Vn/s (kips) =	3856.80	
Level	w (kips)	h (ft)	wh^k (k-ft)	Cv	Fx (kips)
Penthouse/Main Roof	Greenhouse	37.49	83.0000	3804.215	2.0% 77.66
	Mechanical	44.19	73.5833	3979.717	2.1% 81.25
	Level 4	673.19	50.2500	58387.716	30.9% 1192.01
	Level 3	665.90	39.0000	33478.657	23.2% 896.18
	Level 2	837.48	26.7500	28773.271	17.7% 683.48
	Level 1	903.10	14.5000	16594.667	15.2% 587.42
				188915.398	8.8% 338.79
				100.0%	3856.80

E/W Vertical Distribution (ASCE 7-16 Section 12.8.3)			Ve/w (kips) =	4013.69	
Level	w (kips)	h (ft)	wh^k (k-ft)	Cv	Fx (kips)
Penthouse/Main Roof	Greenhouse	37.49	83.0000	3804.215	1.9% 77.40
	Mechanical	44.19	73.5833	3979.717	2.0% 80.97
	Level 4	735.11	64.2500	61803.020	31.3% 1257.44
	Level 3	705.58	50.2500	46063.283	23.4% 937.20
	Level 2	694.19	39.0000	34937.259	17.7% 710.83
	Level 1	852.80	26.7500	29312.893	14.9% 596.40
				197272.029	8.8% 353.44
				100.0%	4013.69

	Diaph. (kips)	+N/S Only (kips)	+E/W Only (kips)	Total N/S Seis. Wt. (kips)	Total E/W Seis. Wt. (kips)	h (ft)
Penthouse/Main Roof	21.26	16.23	16.23	37.49	37.49	83.0000
	29.51	14.68	14.68	44.19	44.19	73.5833
	625.13	70.32	109.98	695.45	735.11	64.2500
	615.75	57.44	89.83	673.19	705.58	50.2500
	615.75	50.15	78.44	665.90	694.19	39.0000
	771.00	66.48	81.80	837.48	852.80	26.7500
Level 1	771.00	132.10	173.33	903.10	944.33	14.5000
				3856.80	4013.69	

$C_s = 0.400$

Effective multiplier
based on BSE-1E
level earthquake

N/S Vertical Distribution (ASCE 7-16 Section 12.8.3)			V_n/s (kips) =	1542.72	
Level	w (kips)	h (ft)	wh^k (k-ft)	C_v	F_x (kips)
Penthouse/Main Roof	Greenhouse	37.49	83.0000	3804.215	2.0% 31.07
	Mechanical	44.19	73.5833	3979.717	2.1% 32.50
	695.45	64.2500	58387.716	30.9%	476.81
	Level 4	673.19	50.2500	43897.155	23.2% 358.47
	Level 3	665.90	39.0000	33478.657	17.7% 273.39
	Level 2	837.48	26.7500	28773.271	15.2% 234.97
Level 1	903.10	14.5000	16594.667	8.8%	135.52
			188915.398	100.0%	1542.72

E/W Vertical Distribution (ASCE 7-16 Section 12.8.3)			V_e/w (kips) =	1605.48	
Level	w (kips)	h (ft)	wh^k (k-ft)	C_v	F_x (kips)
Penthouse/Main Roof	Greenhouse	37.49	83.0000	3804.215	1.9% 30.96
	Mechanical	44.19	73.5833	3979.717	2.0% 32.39
	735.11	64.2500	61803.020	31.3%	502.98
	Level 4	705.58	50.2500	46063.283	23.4% 374.88
	Level 3	694.19	39.0000	34937.259	17.7% 284.33
	Level 2	852.80	26.7500	29312.893	14.9% 238.56
Level 1	944.33	14.5000	17371.643	8.8%	141.38
			197272.029	100.0%	1605.48

N/S Seismic Daphragm Forces (ASCE 7-16 Section 12.10)			$0.2*Sds*le$	$\Sigma F/\Sigma w$	$0.4*Sds*le$	$Use...$	F_{px} (kips)	
Level	wi (kips)	Σw (kips)	ΣF (ft)					
Penthouse/Main Roof	Greenhouse	37.49	37.49	31.07	0.21824	0.829	0.43648	0.829 31.07
	Mechanical	44.19	81.68	63.57	0.21824	0.778	0.43648	0.778 34.39
	695.45	777.13	540.37	0.21824	0.695	0.43648	0.695	483.58
	Level 4	673.19	1450.32	898.84	0.21824	0.620	0.43648	0.620 417.21
	Level 3	665.90	2116.22	1172.24	0.21824	0.554	0.43648	0.554 368.86
	Level 2	837.48	2953.70	1407.20	0.21824	0.476	0.43648	0.476 398.99
Level 1	903.10	3856.80	1542.72	0.21824	0.400	0.43648	0.400	361.24

E/W Seismic Daphragm Forces (ASCE 7-16 Section 12.10)			$0.2*Sds*le$	$\Sigma F/\Sigma w$	$0.4*Sds*le$	$Use...$	F_{px} (kips)	
Level	wi (kips)	Σw (kips)	ΣF (ft)					
Penthouse/Main Roof	Greenhouse	37.49	37.49	30.96	0.21824	0.826	0.43648	0.826 30.96
	Mechanical	44.19	81.68	63.35	0.21824	0.776	0.43648	0.776 34.27
	735.11	816.79	566.33	0.21824	0.693	0.43648	0.693	509.69
	Level 4	705.58	1522.37	941.21	0.21824	0.618	0.43648	0.618 436.23
	Level 3	694.19	2216.56	1225.54	0.21824	0.553	0.43648	0.553 383.82
	Level 2	852.80	3069.36	1464.10	0.21824	0.477	0.43648	0.477 406.79
Level 1	944.33	4013.69	1605.48	0.21824	0.400	0.43648	0.400	377.73

	Diaph. (kips)	+N/S Only (kips)	+E/W Only (kips)	Total N/S Seis. Wt. (kips)	Total E/W Seis. Wt. (kips)	h (ft)
Penthouse/Main Roof	21.26	16.23	16.23	37.49	37.49	83.0000
	29.51	14.68	14.68	44.19	44.19	73.5833
	625.13	70.32	109.98	695.45	735.11	64.2500
	615.75	57.44	89.83	673.19	705.58	50.2500
	615.75	50.15	78.44	665.90	694.19	39.0000
	771.00	66.48	81.80	837.48	852.80	26.7500
Level 1	771.00	132.10	173.33	903.10	944.33	14.5000
				3856.80	4013.69	

$C_s = 1.040$

Effective multiplier
based on BSE-2E
level earthquake

N/S Vertical Distribution (ASCE 7-16 Section 12.8.3)

Level	w (kips)	h (ft)	wh^k (k-ft)	V_n/s (kips) =	Cv	F_x (kips)
Penthouse/Main Roof	37.49	83.0000	3804.215	4011.07	2.0%	80.77
	44.19	73.5833	3979.717		2.1%	84.50
	695.45	64.2500	58387.716		30.9%	1239.69
	673.19	50.2500	43897.155		23.2%	932.03
	665.90	39.0000	33478.657		17.7%	710.82
	837.48	26.7500	28773.271		15.2%	610.92
Level 1	903.10	14.5000	16594.667		8.8%	352.34
			188915.398		100.0%	4011.07

E/W Vertical Distribution (ASCE 7-16 Section 12.8.3)

Level	w (kips)	h (ft)	wh^k (k-ft)	V_e/w (kips) =	Cv	F_x (kips)
Penthouse/Main Roof	37.49	83.0000	3804.215	4174.24	1.9%	80.50
	44.19	73.5833	3979.717		2.0%	84.21
	735.11	64.2500	61803.020		31.3%	1307.74
	705.58	50.2500	46063.283		23.4%	974.69
	694.19	39.0000	34937.259		17.7%	739.27
	852.80	26.7500	29312.893		14.9%	620.26
Level 1	944.33	14.5000	17371.643		8.8%	367.58
			197272.029		100.0%	4174.24

N/S Seismic Daphragm Forces (ASCE 7-16 Section 12.10)

Level	w_i (kips)	Σw (kips)	ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	F_{px} (kips)
Penthouse/Main Roof	37.49	37.49	80.77	0	2.154	0	2.154	80.77
	44.19	81.68	165.27	0	2.023	0	2.023	89.41
	695.45	777.13	1404.96	0	1.808	0	1.808	1257.30
	673.19	1450.32	2336.99	0	1.611	0	1.611	1084.75
	665.90	2116.22	3047.82	0	1.440	0	1.440	959.04
	837.48	2953.70	3658.73	0	1.239	0	1.239	1037.38
Level 1	903.10	3856.80	4011.07	0	1.040	0	1.040	939.22

E/W Seismic Daphragm Forces (ASCE 7-16 Section 12.10)

Level	w_i (kips)	Σw (kips)	ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	F_{px} (kips)
Penthouse/Main Roof	37.49	37.49	80.50	0	2.147	0	2.147	80.50
	44.19	81.68	164.71	0	2.016	0	2.016	89.11
	735.11	816.79	1472.45	0	1.803	0	1.803	1325.20
	705.58	1522.37	2447.14	0	1.607	0	1.607	1134.19
	694.19	2216.56	3186.40	0	1.438	0	1.438	997.93
	852.80	3069.36	3806.66	0	1.240	0	1.240	1057.65
Level 1	944.33	4013.69	4174.24	0	1.040	0	1.040	982.10

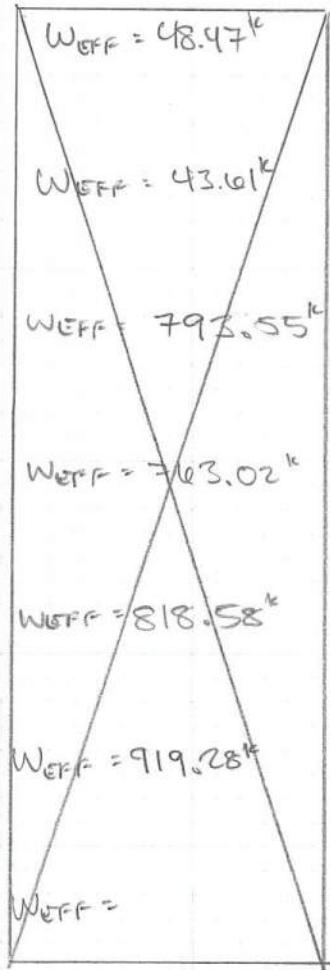
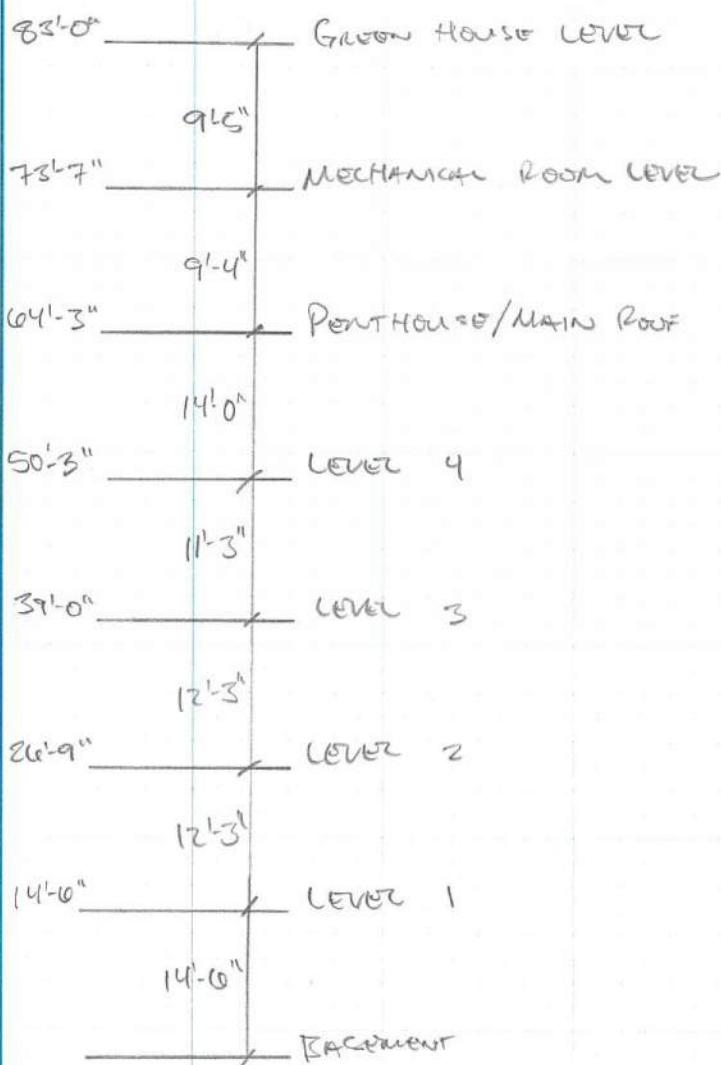
A

R

W

ENGINEERS

structural consultants



Project No. 23124

Sheet No. _____

Project Forest Service Bldg.

Prepared By TDP

Date _____

LATERAL ANALYSIS

GREENHOUSE

$$3'' \text{ SURF} = 38 \text{ psf} \quad \text{Area} = 520 \text{ sq ft} \Rightarrow (38 \text{ psf})(520 \text{ sq ft}) = 19.76 \text{ k}$$

$$\text{PERIMETER}_{\text{WALL}} = 8'' \text{ BRICK} : (35 \text{ psf})(51.0'')(70.0'') = 12.25 \text{ k}$$

$$\text{PARAPET} = (8'' \text{ BRICK} = 35 \text{ psf})(1.6'')(100.0'') = 5.25 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12'' \text{ BRICK} = 40 \text{ psf})(9.5''/2)(110.0'') = 20.72 \text{ k}$$

$$\text{WINDOWS} = (12 \text{ windows})(2.0'') \times (6.0'') (40 \text{ psf}) = 5.76 \text{ k} \quad (\text{SUBTRACT})$$

$$(4.96 \text{ k})$$

$$W_{\text{OFF}} = 19.76 + 12.25 + 14.96 + (1.5 \text{ k GLASS STRUCTURE})$$

$$= 48.47 \text{ k}$$

Mechanical

$$3'' \text{ SURF} = (38 \text{ psf})(645 \text{ sq ft}) = 24.51 \text{ k}$$

$$\frac{1}{2} \text{ WALL ABOVE} = 14.96 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12'' \text{ BRICK} = 40 \text{ psf})(9.5''/2)(110.0'') = 20.54 \text{ k}$$

$$\text{WINDOWS} = (12)(2.0'' \times 6.0'') (40 \text{ psf}) = 5.76 \text{ k}$$

$$(4)(3.4'' \times 6.0'') (40 \text{ psf}) = 3.20 \text{ k}$$

$$= 11.88 \text{ k}$$

$$\text{PARAPET} = (8'' \text{ BRICK} = 35 \text{ psf})(1.6'')(48.0'') = 2.52 \text{ k}$$

$$W_{\text{OFF}} = 24.51 + 11.88 + 2.52 + (5 \text{ k EQUIPMENT})$$

$$= 43.61 \text{ k}$$

PENTHOUSE/ROOF

$$\text{ROOF PANE JONES} = 60\% \text{ VOID} \rightarrow \text{BEST SCALED GUESS}$$

$$\hookrightarrow 15'' \text{ DEEP TOTAL}$$

$$\hookrightarrow (0.4)(15)(150 \text{ psf}) = 75 \text{ psf}$$

$$(75 \text{ psf})(8520 - 185 \text{ sq ft}) = 675.13 \text{ k}$$

$$\frac{1}{2} \text{ WALL ABOVE} = 11.88 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12'' \text{ BRICK} = 40 \text{ psf})(14.0'') (534.0'') = 149.52 \text{ k}$$

$$\text{WINDOW} = (83)(3.8'' \times 6.0'') (40 \text{ psf}) = 59.76 \text{ k}$$

$$= (3)(2.0'' \times 6.0'') (40 \text{ psf}) = 1.44 \text{ k}$$

$$= 88.32 \text{ k}$$

$$\text{PARAPET} = (40 \text{ psf})(534.0'') (3.9') = 80.10 \text{ k}$$

$$W_{\text{OFF}} = 793.55 \text{ k}$$

LEVEL 4

$$\text{FLOOR PWN} = 4 \left(\frac{15}{12} 150 \text{ psf} \right) = 75 \text{ psf} \quad \left[\begin{array}{l} 8210 \text{ SF} \\ - 615.75 \text{ k} \end{array} \right]$$

$$\frac{1}{2} \text{ WALL ABOVE} = 88.32 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12" \text{ BRICK} = 40 \text{ psf}) (12 \frac{3}{8} \text{ in}) (534' 0") = 170.15 \text{ k}$$

$$- 59.76 \text{ k}$$

$$- 1.44 \text{ k}$$

$$\underline{58.95 \text{ k}}$$

$$W_{\text{EFF}} = 743.02 \text{ k}$$

LEVEL 3

$$\text{FLOOR} = 615.75 \text{ k}$$

$$\frac{1}{2} \text{ WALL ABOVE} = 58.95 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12" \text{ BRICK} = 40 \text{ psf}) (12 \frac{3}{8} \text{ in}) (534' 0") = 130.82 \text{ k}$$

$$- 59.76 \text{ k}$$

$$- 1.44 \text{ k}$$

$$\underline{69.80 \text{ k}}$$

$$W_{\text{EFF}} = 818.58 \text{ k}$$

LEVEL 2

$$\text{FLOOR} = 615.75 \text{ k}$$

$$\frac{1}{2} \text{ WALL ABOVE} = 69.03 \text{ k}$$

$$\frac{1}{2} \text{ WALL BELOW} = (12" \text{ BRICK} = 40 \text{ psf}) (12 \frac{3}{8} \text{ in}) (418' 0") = 102.41 \text{ k}$$

$$\text{WINDOW} = (28)(3' 0" \times 6' 0") (40 \text{ psf}) = 20.16 \text{ k}$$

$$(1)(9' 0" \times 6' 0") (40 \text{ psf}) = 2.16 \text{ k}$$

$$(3)(21' 0" \times 6' 0") (40 \text{ psf}) = 1.44 \text{ k}$$

$$\underline{78.65 \text{ k}}$$

$$\text{ROOF} = 75 \text{ psf} (2070 \text{ SF}) = 155.25 \text{ k}$$

$$W_{\text{EFF}} = 919.28 \text{ k}$$

Layer 1

$$\text{Floor} = 75 \text{ psf} (2070 + 8210 \text{ sf}) = \underline{771.00^k}$$

$$\frac{1}{2} \text{ wall above} = \underline{78.05^k}$$

$$\frac{1}{2} \text{ wall below} = (12" \text{ conc} = 225 \text{ psf}) \left(\frac{6' - 8"}{2} \right) (513' - 0") = \underline{234.75^k}$$

$$-(75)(3' - 0" \times 2' - 0") (225 \text{ psf}) = 32.75^k$$

$$+(12" \text{ Brick} = 40 \text{ psf}) \left(\frac{14' - 4"}{2} \right) (105' - 0") = 30.45^k$$

$$-(6.5)(3' - 0" \times 6' - 0") (40 \text{ psf}) = \underline{4.68^k}$$

$$\text{Warp} = \underline{1076.45^k}$$

WEIGHT DISTRIBUTION
FOR VERTICAL DISTRIBUTION

GREENHOUSE DIAPH = 19.76^k

$$\text{N/S WALLS} = \frac{1}{2}(12.25 + 5.25 + 14.94) = 16.23^k$$

$$\text{E/W WALLS} = " (" ") = 16.23^k$$

MECHANICAL DIAPH = 24.51^k

$$\text{N/S WALLS} = \frac{1}{2}(14.94 + 11.88 + 2.52) = 14.68^k$$

$$\text{E/W WALLS} = " (" ") = 14.68^k$$

PENTHOUSE/MAIN ROOF DIAPH = 625.13^k

$$\text{N/S WALLS} = .39(11.88 + 88.32 + 80.10) = 70.32^k$$

$$\text{E/W WALLS} = .61(" ") = 109.98^k$$

$$\text{N/S} = 39\%$$

$$\text{E/W} = 61\%$$

LEVEL 4 DIAPH = 615.75^k

$$\text{N/S WALLS} = .39(88.32 + 58.95) = 57.44^k$$

$$\text{E/W WALLS} = .61(" ") = 89.83^k$$

LEVEL 3 DIAPH = 615.75

$$\text{N/S WALLS} = .39(58.95 + 69.63) = 50.15^k$$

$$\text{E/W WALLS} = .61(" ") = 78.44^k$$

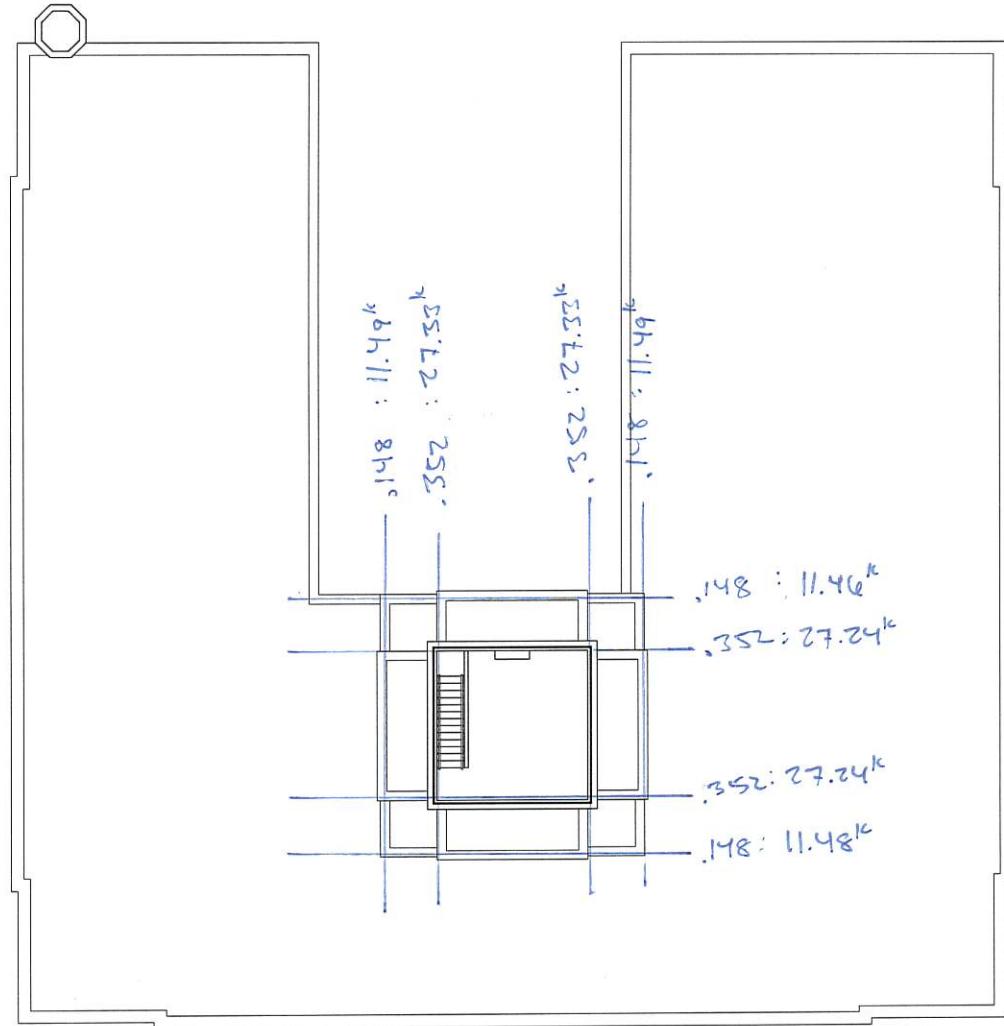
LEVEL 2 DIAPH = 615.75 + 155.25 = 771.00^k

$$\text{N/S WALLS} = .39(69.63) + .50(78.44) = 66.48^k$$

$$\text{E/W WALLS} = .61(" ") + .50(" ") = 81.80^k$$

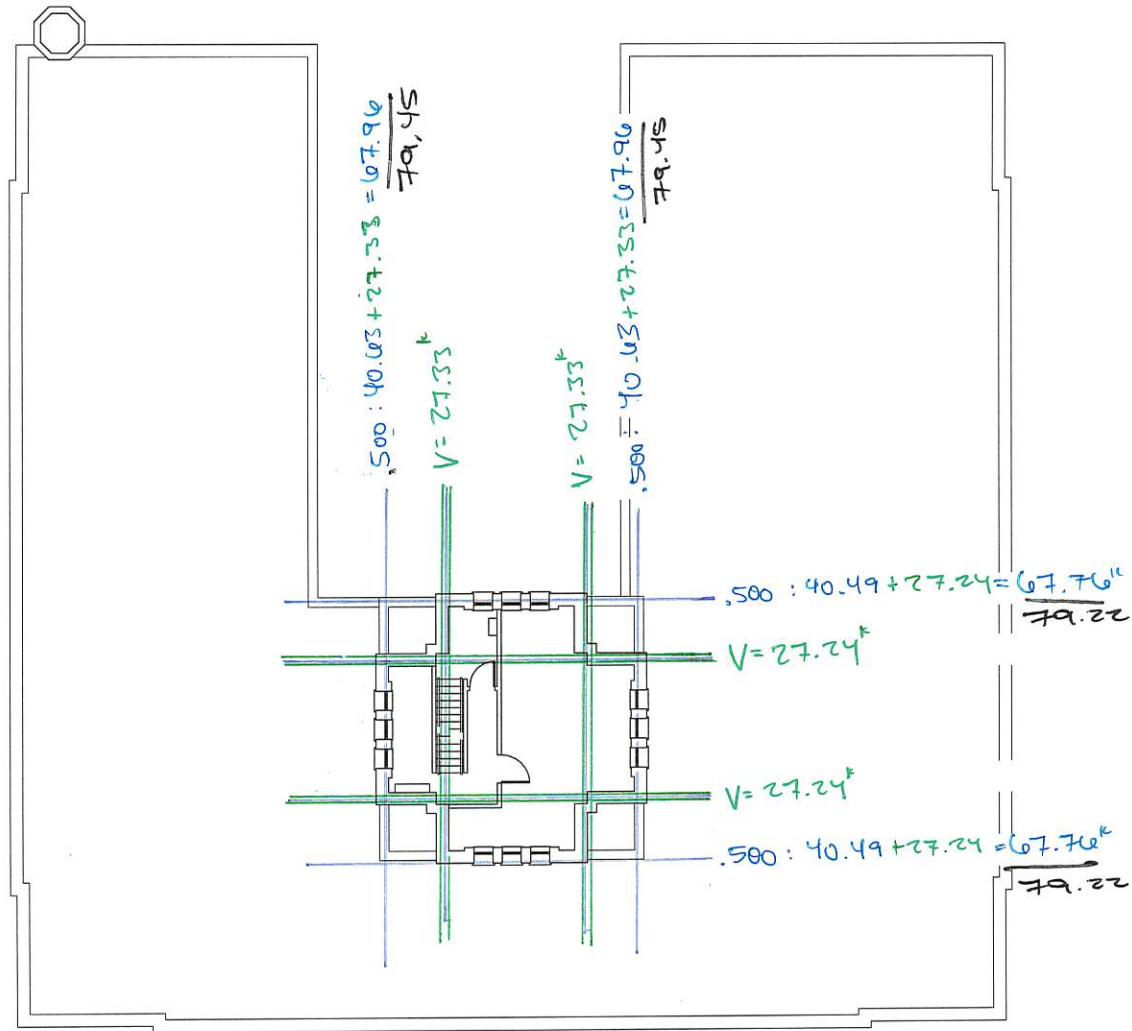
LEVEL 1 DIAPH = 771.00^k

$$\text{N/S WALLS} = .5(78.44) + (.30.45 - 4.68) + \frac{1}{3}(234.75 - 23.75) = 132.10^k$$


$$\text{E/W WALLS} = .5(78.44) + \frac{2}{3}(234.75 - 23.75) = 143.33^k$$

BLUE = TOTAL ALONG
WALL LINE
AT THIS LEVEL

BLACK = CUMULATIVE
AT THIS LEVEL
FROM ROOF DOWN


GREEN = FORCE FROM
CLEAR WALL
ABOVE

Greenhouse
 $F_{N/S} = 77.65^k$
 $F_{G/W} = 77.40^k$

$$\frac{F_N}{s} = 81.25^k$$

$$\frac{F_e}{w} = 80.97^k$$

(103.)

128.89^k

29'-11"

34'-9"

38'-10"

147.24^k
(133)

205

206

58'-8"

8'-11"
5'-4.5h
= 1

25'-10"

153

25'-10"

198

17'-11"

V = 79.22^k

43'-9"

(.500)
628.72
52.48 (.410)
661.20^k
740.42^k

(.264)
332.59
46.74 (.590)
379.33^k

(112)
212.34^k

58.02^k
218.40^k
(208)

405.00^k
20.24^k
(122)

482.5^k
222.1^k

NORTH

PENTHOUSE/MAIN ROOF

$F_N/s = 1192.01^k$

$F_e/W = 1257.44^k$

$A = 8561$

(3)

(.103)

96.04^k
 224.95^k

.205

.153

100.12^k
 252.79^k

18.64^k
 40.08^k

18.64^k
 40.08^k

18.64^k
 40.08^k

18.64^k
 40.08^k

20.91^k
 427.22^k

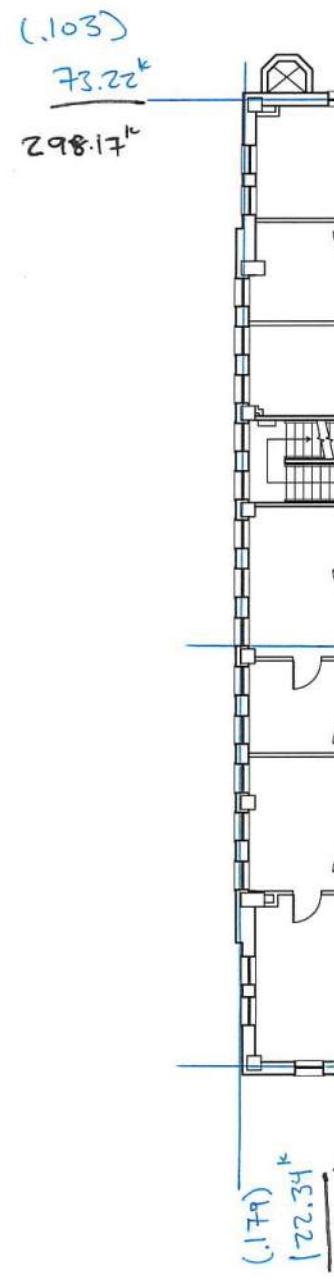
NORTH

(.264)

247.89^k
 627.22^k

(.500)

468.46^k
 1209.02^k


(.133)

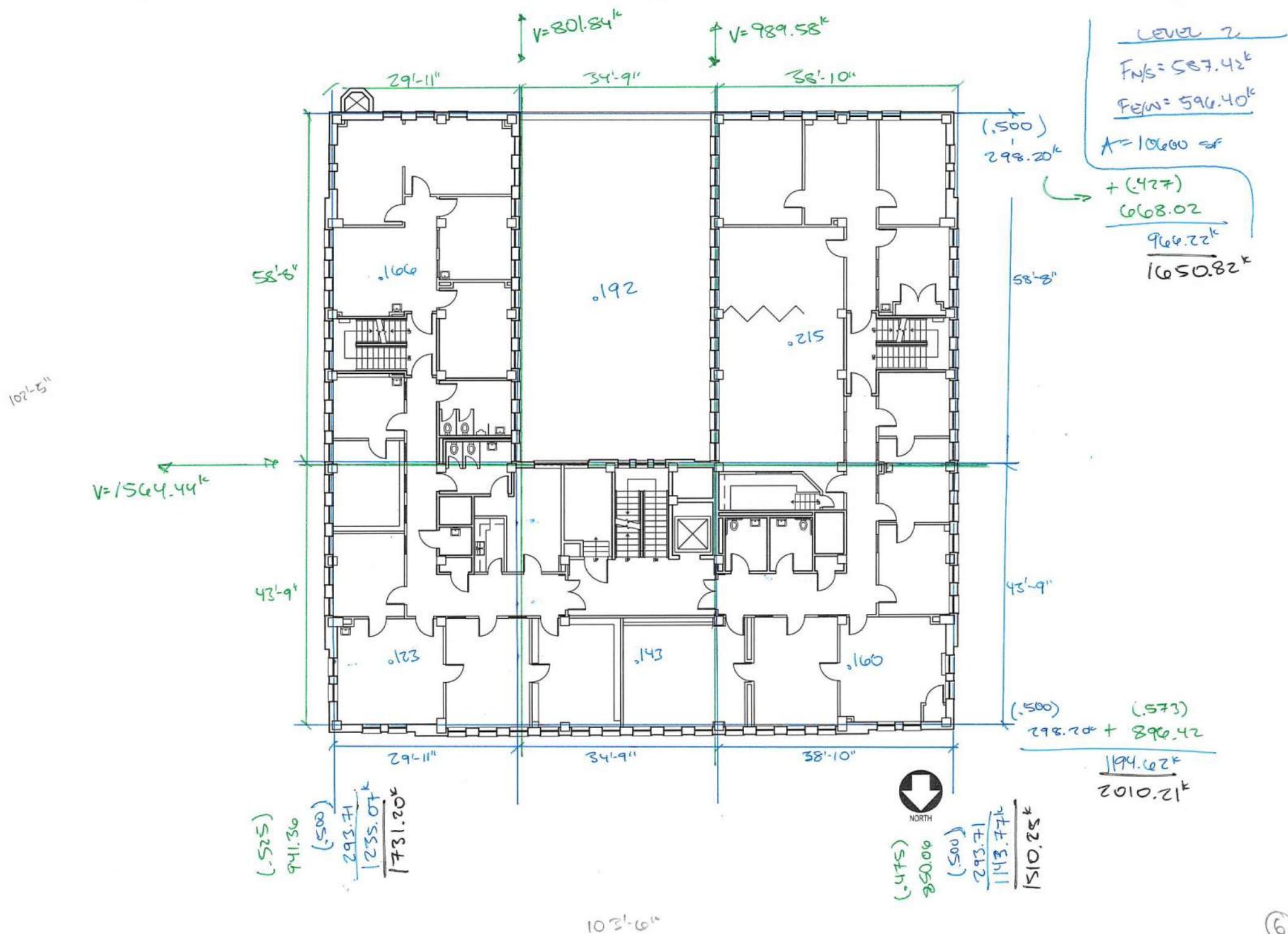
124.65^k
 291.89^k

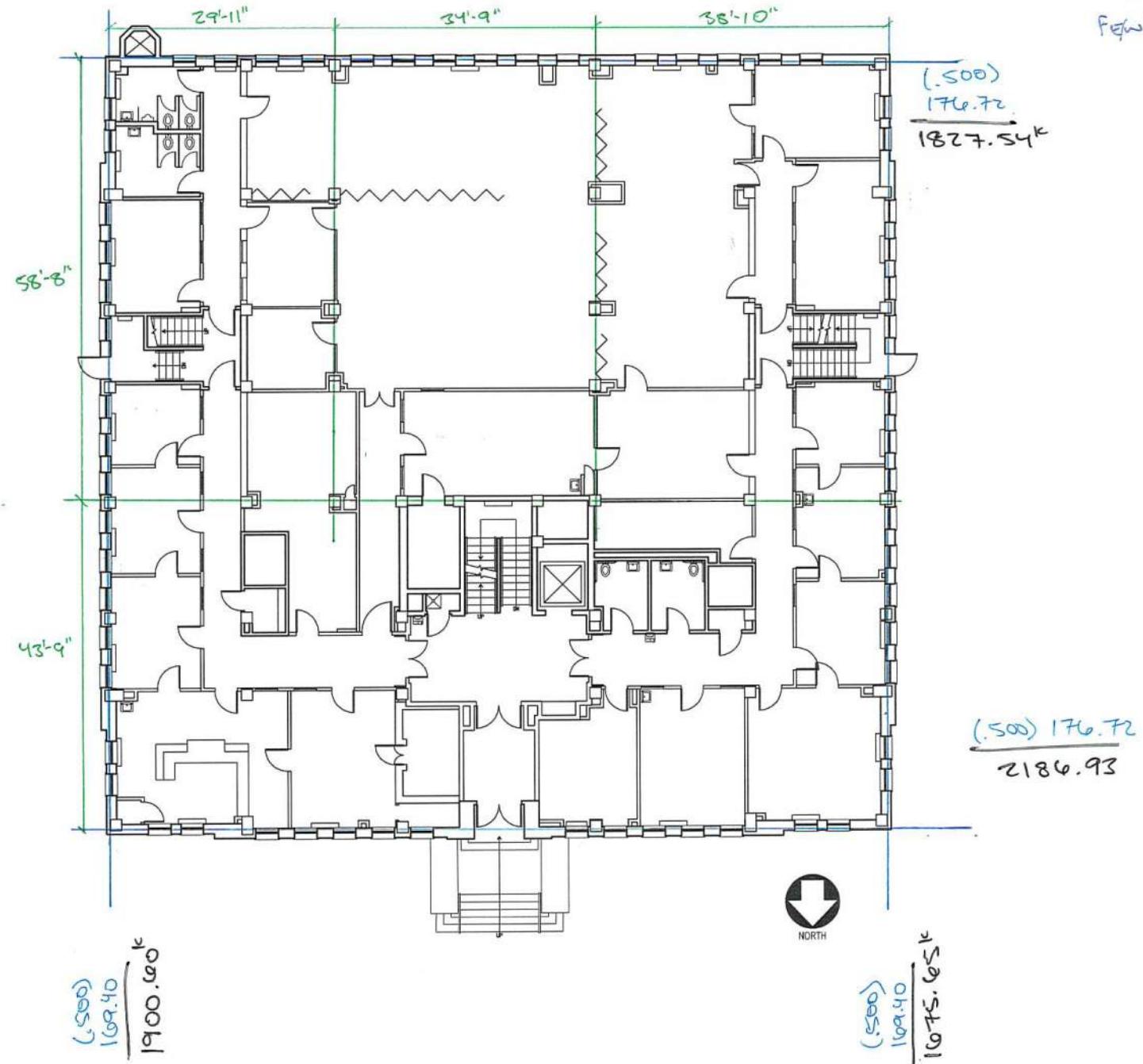
LEVEL 4
 $F_{NJS} = 8946.18^k$

$F_{EDW} = 937.20^k$

(4)

(.321) 19.42^k
 989.55^k


(.222) 158.57^k
 3560.48^k


(.500) 355.42^k
 1564.44^k

(.133) 94.54^k
 386.43^k

LEVEL 3
 $F_{N/S} = 683.48^k$
 $F_{E/W} = 710.83^k$

$$\begin{array}{l} \text{LEVEL 1} \\ \hline F_{N/S} = 338.79 \\ F_{E/W} = 353.44 \end{array}$$

(.500) 176.72
2184.93

A small circular compass rose with a white arrow pointing downwards, labeled 'NORTH' below it.

7

(LEVEL 1
SPOT CHECK)URM Hand Check

(per ASCE 41-17)

MAX FORCE IN SHEAR WALLS = 2185.44^k (W_{EFF} - LEVEL VALUE)By RELATIVE RIGIDITY, THE LONGEST 7'0" PEL TAKES 22% OF
TOTAL WALL LINE FORCE IN NORTH WALL

$$W = .22(2185.44^k) = \underline{480.80^k} \rightarrow \begin{array}{l} \text{(2185 VALUE SLIGHTLY DIFFERENT)} \\ \text{(THAN 2180 VALUE ON PREVIOUS PAGE)} \\ \text{DUE TO CALL EDITS} \end{array}$$

→ From PSEUDO LATERAL FORCE SPREAD SHEET:

BSCE-1E (LS)BSCE-2E (CP)

$$V = 0.4 W = \underline{192.32^k}$$

$$V = 1.04 W = \underline{500.03^k}$$

(Qua)

CHECK IN-PLANE ROLLING (Sec. 11.3.2.2.1)

$$Q_{CE} = .9(\alpha P_D + .5 P_w) \frac{L}{h_{eff}}$$

$$Q_{CE} = \underline{3.30^k}$$

 $\alpha = 1.0$ (FIXED-FIXED) $P_D = 2.30^k$ (SUPERIMPOSED DL ABOVE) $P_w = 1.08^k$ (WALL SELF WT.) $L = 7'0"$ $\Rightarrow \frac{L}{h} = 1.167$ $h_{eff} = 6'0"$ $\Rightarrow \frac{h}{L} = 0.857$

CODE SECTIONS

11.3.2.2.1

11.3.2.2.2

11.3.2.2.3

11.3.2.2.4

11.3.2.2.5

11.3.2.2.6

11.3.2.2.7

11.3.2.2.8

11.3.2.2.9

11.3.2.2.10

11.3.2.2.11

11.3.2.2.12

11.3.2.2.13

11.3.2.2.14

11.3.2.2.15

11.3.2.2.16

11.3.2.2.17

11.3.2.2.18

11.3.2.2.19

11.3.2.2.20

11.3.2.2.21

11.3.2.2.22

11.3.2.2.23

11.3.2.2.24

11.3.2.2.25

11.3.2.2.26

11.3.2.2.27

11.3.2.2.28

11.3.2.2.29

11.3.2.2.30

11.3.2.2.31

11.3.2.2.32

11.3.2.2.33

11.3.2.2.34

11.3.2.2.35

11.3.2.2.36

11.3.2.2.37

11.3.2.2.38

11.3.2.2.39

11.3.2.2.40

BSCE-1E (LS)

(per Sec. 6.2.4)

$$\frac{f_a}{f_{lm}} = \frac{2.30^k / (1.0 \times 7.0)}{1.5 \text{ ksf}} = .329 \text{ ksf} = .219 > .04 \rightarrow \text{FORCE CONTROLLED}$$

$$\rightarrow \frac{\chi_{Qua}}{C_{CrJ}} = \frac{1.3}{1.1} = 1.167$$

$$= 113.64^k$$

$$\chi = 1.3 \text{ (LIFE SAFETY, Eq. 7-35)}$$

$$C_{Cr} = 1.1 \text{ (TABLE 7-3)}$$

$$J = 2.0 \text{ (HIGH SEISMIC, Eq. 7-35)}$$

BSCE-2E (CP)(SAME AS BSCE-1E) $\rightarrow \frac{\chi = 1.0 \text{ (COLLAPSE PREV.)}}{C_{CrJ} = 1.1} = \underline{227.29^k}$ CHECK DCRBSCE-1E (LS)

$$DCR = \frac{Q_{Qua}}{Q_{CE}} = \frac{113.64^k}{3.30^k} = 34.44$$

$$34.44 > k = 0.75$$

∴ UPGRADE REQDBSCE-2E (CP)

$$DCR = \frac{227.29^k}{3.30^k} = 68.88$$

$$68.88 > k = 0.75$$

∴ UPGRADE REQD

(LEVEL 4
(SPOT CHECK))ULM Hand Check (per ASCE 41-17)MAX FORCE IN SHEAR WALLS = 379.33 kip (W_{EFF} - LEVEL VALUE)By RELATIVE RIGIDITY, THE LONGEST FLOOR PLATE TAKES 22% OF
TOTAL WALL LINE FORCE IN NORTH WALL

$$W = .22 (379.33 \text{ kip}) = \underline{82.13 \text{ kip}}$$

→ From PEWEDO LATERAL FORCE SPREAD SHEET:

BSE-1E (LS)BSE-2E (CP)

$$V = 0.4 W = \underline{32.85 \text{ kip}}$$

$$V = 1.04 W = \underline{85.42 \text{ kip}}$$

(Qud)

CHECK IN-PLANE ROLLING (Sec. 11.3.2.2.1)

$$Q_{ue} = .9 (0.75 P_b + .5 P_w) \frac{L}{h_{eff}}$$

 $\alpha = 1.0$ (FIXED-FIXED) $P_b = 3.40 \text{ kip}$ (SUPERIMPOSED DL ABOVE) $P_w = 1.68 \text{ kip}$ (WALL SELF WT.)

$$L = 7'0'' \Rightarrow \frac{L}{h} = 1.1 \text{ (7'0'' / 6'0'')}$$

$$h_{eff} = 6'0'' \Rightarrow \frac{h}{L} = 0.857$$

$$Q_{ue} = \underline{4.45 \text{ kip}}$$

FIND m-FACTORS (TABLE 11-3) (USE KNOWLEDGE FACTOR $k = 0.75$)BSE-1E (LS)

(per Sec. 6.2.4)

$$\frac{f_a}{f_{lim}} = \frac{3.40 \text{ kip} / (1.0 \times 7'0'')} = .485 \text{ ksf}$$

ASSUME 1.5 ksf $\Rightarrow \frac{2Q_{ue}}{C_{eff}J} = \frac{2 \times 4.45}{1.5 \times 20} = .323 > .04 \rightarrow$ FORCE CONTROLLED

$$\frac{2Q_{ue}}{C_{eff}J} = \frac{2 \times 4.45}{1.5 \times 20} = .323 > .04 \rightarrow$$

\Rightarrow SEE SEL. 7.5.2.1.2
7.5.2.2.2

BSE-2E (CP)

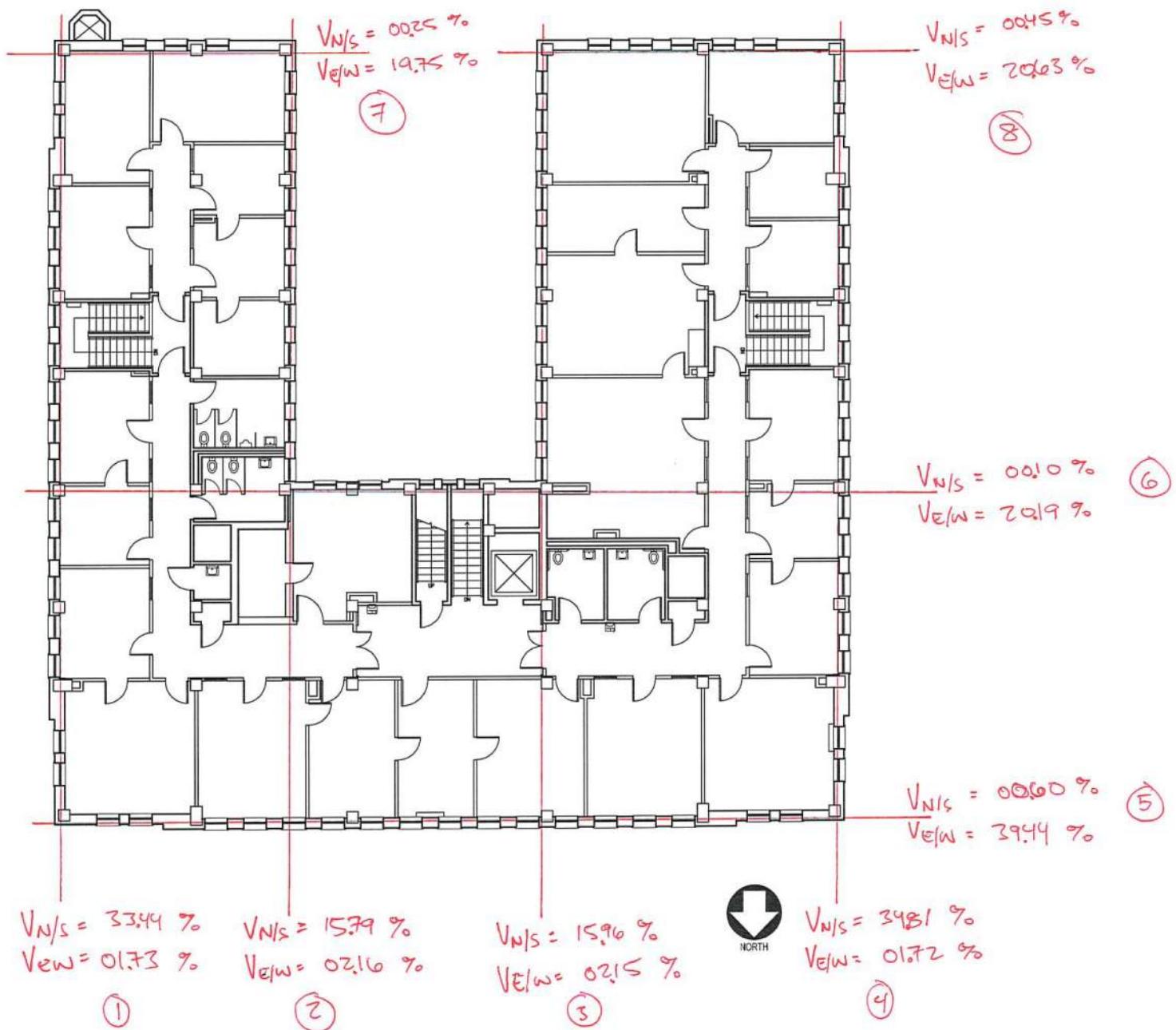
$$(\text{SAME AS BSE-1E}) \rightarrow \frac{2Q_{ue}}{C_{eff}J} = \frac{2 \times 4.45}{1.1 \times 20} = \underline{38.83 \text{ kip}}$$

Check DCR

BSE-1E (LS)

$$DCR = \frac{Q_{ud}}{Q_{ue}} = \frac{19.42}{4.45} = 4.36$$

$$4.36 > k = 0.75$$


∴ UPGRADE REQDBSE-2E (CP)

$$DCR = \frac{38.83}{4.45} = 8.73$$

$$8.73 > k = 0.75$$

∴ UPGRADE REQD

% OF HYPOTHETICAL FORCE
TO EACH WALL USING
RIGID DIAPHRAGM ANALYSIS

(LEVEL = MAIN ROOF)

Conc. DIAPH CHECK (PER ASCE 41-17)

	BSE-1E	BSE-2E	→ DIAPH VERT DISTRIBUTION
F _{pk} N/S	483.58 ^k	1257.30 ^k	
F _{pk} E/W	509.69 ^k	1325.20 ^k	

N/S WORST CASE Data: (HYPOTHETICAL FORCES)

$$\textcircled{4} = 34.81^k / (58.8" + 43.9") = \underline{340 \text{ plf}} \quad (> \text{LINE } \textcircled{1})$$

\downarrow
102.5"

$$\textcircled{2} + \textcircled{3} \quad \text{CHECK} \rightarrow 340 \text{ plf} (43.9") = 14.88^k < 15.79^k$$

\rightarrow LINE $\textcircled{4}$ CONTROLS (N/S)

E/W WORST CASE Data: (HYPOTHETICAL)

$$\textcircled{5} = 59.44^k / (29.11" + 34.9" + 38.10") = \underline{381 \text{ plf}}$$

\downarrow
103.60"

$$\textcircled{6} \quad \text{CHECK} \rightarrow 381 \text{ plf} (34.9") = 13.24^k < 20.19^k$$

\rightarrow LINE $\textcircled{5}$ CONTROLS

$$\textcircled{7} = 19.75^k / 29.11" = \underline{660 \text{ plf}} \quad (\text{GOVERNS E/W})$$

$$\textcircled{8} = 20.03^k / 38.10" = \underline{531 \text{ plf}}$$

BSE-1E

$$\text{N/S} = 0.3481 (483.58^k / 102.5") = \underline{1644 \text{ plf}} \quad \rightarrow \text{Q.E. - N/S}$$

$$\text{E/W} = 0.1975 (509.69^k / 29.11") = \underline{3365 \text{ plf}} \quad \rightarrow \text{Q.E. E/W} \quad (\text{E/W GOVERNS})$$

BSE-2E

$$\text{N/S} = 0.3481 (1257.30^k / 102.5") = \underline{4274 \text{ plf}} \quad \rightarrow \text{Q.E. - N/S}$$

$$\text{E/W} = 0.1975 (1325.20^k / 29.11") = \underline{8749 \text{ plf}} \quad \rightarrow \text{Q.E. - E/W} \quad (\text{E/W GOVERNS})$$

THESE REDUCTION FACTORS CORRESPOND TO PROPORTIONAL
FORCES @ WALL LINES FOR RIGID DIAPH. ANALYSIS

DIAPH. CHECK CONT.

(MAIN ROOF LEVEL)

CHECK DIAPH. STRENGTH (PER ACI 318-19, SEC. 12.5.3)

$$\phi V_n = \phi A_{cv} (2 \lambda \bar{f}_{lc} + f_t f_y) \leq \phi 8 A_{cv} \bar{f}_{lc}$$

 $\lambda (EO 12.5.3.3)$ $\lambda (EO 12.5.3.4)$ $\phi = 0.75$ $A_{cv} = 3" \text{ THICK}$
(OMIT LENGTH TO GET \bar{f}_{lc}) $f_{lc} = 3000 \text{ (ASSUME)}$ $f_t = 0.05$
(ASSUME NEARLY θ REING.) $f_y = 60 \text{ ksi}$

$$\phi V_n = 2957 \text{ psf}$$

CHECK DCR'S

→ BECAUSE THE MAIN ROOF DIAPHRAGM TRANSFERS FORCE FROM THE PENTHOUSE WALLS TO OUTER WALLS, THE DIAPH IS FORCE-CONTROLLED PER SEC. 7.4.1.3.4 OF ASCE 41-17.

$$BSE-1E: Q_{uf} = \frac{\lambda Q_E}{C_1 C_2 J}$$

 $\lambda = 1.0 \text{ (Life Safety)}$ $C_1 C_2 = 1.1$ $J = 2.0$

$$= 971 \text{ psf (N/S)} + 1989 \text{ psf (E/W)}$$

VALUES FROM
PREVIOUS PAGE
ADJUSTED PER
Q_{uf} EQ.

$$DCR_{N/S} = \frac{971 \text{ psf}}{2957 \text{ psf}} = 0.328$$

$$DCR_{E/W} = \frac{1989}{2957} = 0.672$$

GOVERNS BSE-1E

$$DCR = 0.672 < k = 0.75 \therefore \underline{\text{OK}}$$

$$BSE-2E: Q_{uf} = 1943 \text{ psf (N/S)} + \frac{3976}{2957} \text{ psf (E/W)} \quad (\lambda = 1.0 \text{ CP})$$

$$DCR_{N/S} < DCR_{E/W} = \frac{3976}{2957} = 1.34$$

SEE ABOVE

$$DCR = 1.34 > k = 0.75 \therefore \underline{\text{UPGRADE REQ'D}}$$

Quick DIAPH CHECKS BASED ON PREVIOUS CALCLEVEL 4 DIAPH: (DEFORMATION CONTROLLED)BSE-1E

$$N/S = (358.47 / 476.81) \times 1644 = 1236 \text{ puf} \rightarrow Q_{E-N/S}$$

$$E/W = (374.88 / 509.69) \times 3365 = 2475 \text{ puf} \rightarrow Q_{E-E/W}$$

BSE-2E

$$N/S = (932.03 / 1257.30) \times 4274 = 3169 \text{ puf} \rightarrow Q_{E-N/S}$$

$$E/W = (974.69 / 1325.20) \times 8749 = 6435 \text{ puf} \rightarrow Q_{E-E/W}$$

$$\text{DN} = 2957 \text{ puf} \rightarrow Q_{E-E}$$

per Sec. 10.10.2.4, use TABLE 10-22 m-factors for SHEAR

BSE-1E, m=2 (LS)

$$DCR_{N/S} = \frac{1236}{2957} = 0.42$$

$$DCR_{E/W} = \frac{2475}{2957} = 0.84$$

BSE-2E, m=3 (CP)

$$DCR_{N/S} = \frac{3169}{2957} = 1.07$$

$$DCR_{E/W} = \frac{6435}{2957} = 2.18$$

$$0.84 < k_m = 1.05$$

$$2.18 < k_m = 2.25 \quad (\text{use } k=.75)$$

∴ NO UPGRADE REQD∴ NO UPGRADE REQD

↳ LEVEL 4 VALUES ARE WORST-CASE
 AMONG DEFORMATION - CONTROLLED
DIAPHRAGMS.

DIAPHRAGM CHECK CONT.

LEVEL 2 → Force-controlled due to short walls
in center of building terminating @ Level 2.

$$\phi V_n = 2957 \text{ psf} \longrightarrow Q_{de}$$

BSE-1E

$$N/S = [0.5(234.97) + 941.36]/102.5" = 10339 \text{ psf} \longrightarrow Q_{de-N/S} \text{ (N/S governs)}$$

$$E/W = [0.5(250.56) + 894.42]/103.6" = 9814 \text{ psf} \longrightarrow Q_{de-E/W}$$

BSE-2E

$$N/S = [0.5(610.92) + 941.36]/102.5" = 12174 \text{ psf} \longrightarrow Q_{de-N/S} \text{ (N/S governs)}$$

$$E/W = [0.5(620.26) + 894.42]/103.6" = 11058 \text{ psf} \longrightarrow Q_{de-E/W}$$

BSE-1E

$$Q_{UD} = \frac{\phi Q_{de}}{C_{IGJ}} = \frac{1.3(10339)}{1.1(2.0)} = 6110 \text{ psf}$$

$$DCR = \frac{6110}{2957} = 2.07 \longrightarrow 2.07 > k = 0.75$$

∴ UPGRADE REQ'D

BSE-2E

$$Q_{UD} = \frac{1.0(12174)}{1.1(2.0)} = 5534 \text{ psf}$$

$$DCR = \frac{5534}{2957} = 1.88 \longrightarrow 1.88 > k = 0.77$$

∴ UPGRADE REQ'D

Summary of conc. Diaptl.

LEVEL	FORCE/DEFORMATION	UPGRADE?
MAIN ROOF	FORCE CONTROLLED	REQ'D
LEVEL 4	DEFORMATION	NOT REQ'D
LEVEL 3	DEFORMATION	NOT REQ'D
LEVEL 2	FORCE	REQ'D
LEVEL 1	DEFORMATION	NOT REQ'D

CHECK CONCRETE FRAMES
WITH MASONRY INFILL

(PER ASCE 41-17)

MASONRY INFILL IN-PLANE (Sec. 11.4.2.3)

FIND INFILL LATERAL STIFFNESS

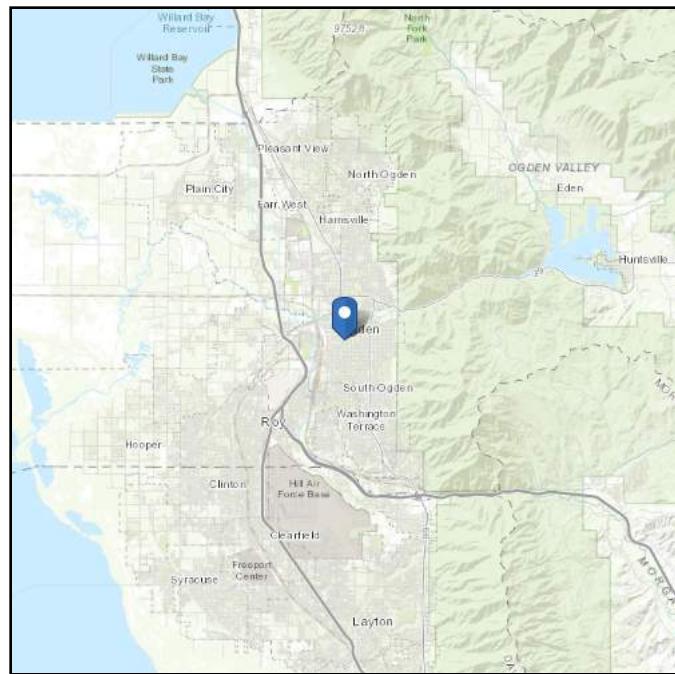
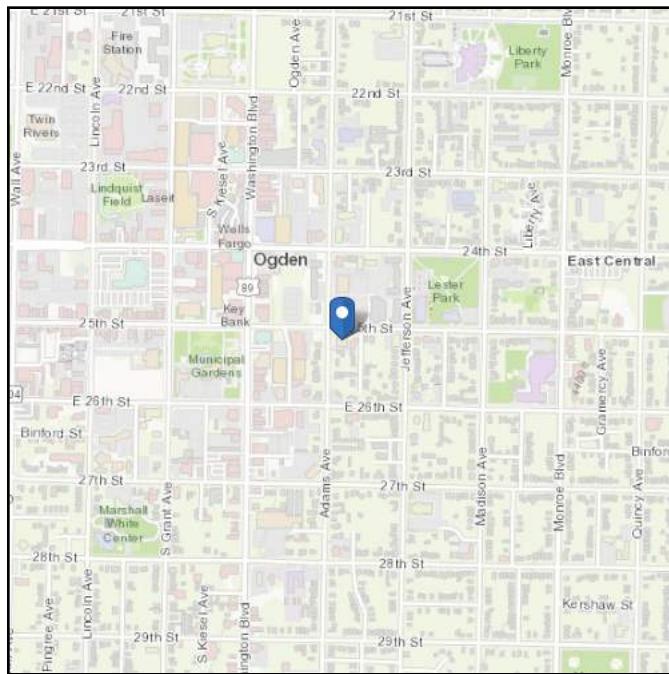
$$K_{inf} = \frac{1}{(K_{inf,f})} + \frac{1}{K_{concrete}} \quad (\text{Eq 11.5.2})$$

$$K_{inf,f} = \frac{3 E_{masonry} I_{inf}}{h_{inf}^3}$$

$$E_{masonry} = 700 \text{ f'm} \dots f'm \approx 2.1 \text{ ksi} \quad (\text{Assumed})$$

$$= 1470 \text{ ksi}$$

$$I_{inf} = bh^3/12 \quad b = 75(8") = 60"$$



$$h = 24" \text{ or } 10"$$

→ CHECKING FRAMES WITH INFILL ASSUMED NET TO
 BE AN ISSUE SINCE ALL INFILL BAYS HAVE
 WINDOWS, SO COMPRESSION STRAINS WILL NOT FORM.
 DEFORMATION COMPATIBILITY CHECKS ULLY STILL REQD
 FOR UPGRAGES.

ASCE 7 Hazards Report

Address:

No Address at This Location

Standard: ASCE/SEI 7-16**Risk Category:** II**Soil Class:** D - Default (see Section 11.4.3)**Latitude:** 41.220265**Longitude:** -111.96717**Elevation:** 4366.684299940585 ft
(NAVD 88)

Site Soil Class: D - Default (see Section 11.4.3)**Results:**

S_s :	1.364	S_{D1} :	N/A $S_{D1} = 0.598$
S_1 :	0.498	T_L :	8
F_a :	1.2	PGA :	0.618
F_v :	N/A $F_v = 1.802$	PGA_M :	0.742
S_{MS} :	1.637	F_{PGA} :	1.2
S_{M1} :	N/A $S_{M1} = 0.897$	I_e :	1
S_{Ds} :	1.091	C_v :	1.373

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Thu Nov 02 2023**Date Source:** [USGS Seismic Design Maps](#)

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

	Diaph. (kips)	+N/S Only (kips)	+E/W Only (kips)	Total N/S Seis. Wt. (kips)	Total E/W Seis. Wt. (kips)	h (ft)
Penthouse/Main Roof	21.26	16.23	16.23	37.49	37.49	83.0000
	29.51	14.68	14.68	44.19	44.19	73.5833
	625.13	70.32	109.98	695.45	735.11	64.2500
	615.75	57.44	89.83	673.19	705.58	50.2500
	615.75	50.15	78.44	665.90	694.19	39.0000
	771.00	66.48	81.80	837.48	852.80	26.7500
Level 1	771.00	132.10	173.33	903.10	944.33	14.5000
				3856.8	4013.69	

$k =$ 1.025
 $Sds =$ 1.091
 $le =$ 1
 $Cs =$ 0.218

$k =$	1.025	$T =$	0.550	$TL =$	8
$Ss =$	1.364	$S1 =$	0.498	Risk Category =	II
$Fa =$	1.2	$Fv =$	1.802		
$Sds =$	1.091	$Sd1 =$	0.598		
$le =$	1	$R =$	5		
$Cs =$	0.218	Design Category =	D	Table 11.6-1	D
				Table 11.6-2	D

N/S Vertical Distribution (ASCE 7-16 Section 12.8.3)

Level	w (kips)	h (ft)	wh^k (k-ft)	Vn/s (kips) =	Cv	Fx (kips)
Penthouse/Main Roof	37.49	83.0000	3804.215	839.10		
	44.19	73.5833	3979.717		2.0%	16.90
	695.45	64.2500	58387.716		2.1%	17.68
	673.19	50.2500	43897.155		30.9%	259.34
	665.90	39.0000	33478.657		23.2%	194.98
	837.48	26.7500	28773.271		17.7%	148.70
Level 1	903.10	14.5000	16594.667		15.2%	127.80
			188915.398		8.8%	73.71
					100.0%	839.10

E/W Vertical Distribution (ASCE 7-16 Section 12.8.3)

Level	w (kips)	h (ft)	wh^k (k-ft)	Ve/w (kips) =	Cv	Fx (kips)
Penthouse/Main Roof	37.49	83.0000	3804.215	873.23		
	44.19	73.5833	3979.717		2.0%	17.58
	695.45	64.2500	58387.716		2.1%	18.40
	673.19	50.2500	43897.155		30.9%	269.89
	665.90	39.0000	33478.657		23.2%	202.91
	837.48	26.7500	28773.271		17.7%	154.75
Level 1	903.10	14.5000	16594.667		15.2%	133.00
			188915.398		8.8%	76.71
					100.0%	873.23

N/S Seismic Daphragm Forces (ASCE 7-16 Section 12.10)

Level	wi (kips)	Σw (kips)	ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	Fpx (kips)
Penthouse/Main Roof	37.49	37.49	16.90	0.21824	0.451	0.43648	0.436	16.36
	44.19	81.68	34.57	0.21824	0.423	0.43648	0.423	18.70
	695.45	777.13	293.91	0.21824	0.378	0.43648	0.378	263.02
	673.19	1450.32	488.89	0.21824	0.337	0.43648	0.337	226.92
	665.90	2116.22	637.59	0.21824	0.301	0.43648	0.301	200.63
	837.48	2953.70	765.39	0.21824	0.259	0.43648	0.259	217.01
Level 1	903.10	3856.80	839.10	0.21824	0.218	0.43648	0.218	197.09

E/W Seismic Daphragm Forces (ASCE 7-16 Section 12.10)

Level	wi (kips)	Σw (kips)	ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	Fpx (kips)
Penthouse/Main Roof	37.49	37.49	17.58	0.21824	0.469	0.43648	0.436	16.36
	44.19	81.68	35.98	0.21824	0.440	0.43648	0.436	19.29
	735.11	816.79	305.87	0.21824	0.374	0.43648	0.374	275.28
	705.58	1522.37	508.77	0.21824	0.334	0.43648	0.334	235.80
	694.19	2216.56	663.52	0.21824	0.299	0.43648	0.299	207.80
	852.80	3069.36	796.52	0.21824	0.260	0.43648	0.260	221.31
Level 1	944.33	4013.69	873.23	0.21824	0.218	0.43648	0.218	206.09

R=5
Special Reinf. Concrete Shear Walls
 (concrete/shotcrete wall option)

	Diaph. (kips)	+N/S Only (kips)	+E/W Only (kips)	Total N/S Seis. Wt. (kips)	Total E/W Seis. Wt. (kips)	h (ft)
Penthouse/Main Roof	21.26	16.23	16.23	37.49	37.49	83.0000
	29.51	14.68	14.68	44.19	44.19	73.5833
	625.13	70.32	109.98	695.45	735.11	64.2500
	615.75	57.44	89.83	673.19	705.58	50.2500
	615.75	50.15	78.44	665.90	694.19	39.0000
	771.00	66.48	81.80	837.48	852.80	26.7500
Level 1	771.00	132.10	173.33	903.10	944.33	14.5000
				3856.8	4013.69	

$k =$ 1.025
 $Sds =$ 1.091
 $le =$ 1
 $Cs =$ 0.136

$k =$	1.025	$T =$	0.550	$TL =$	8
$Ss =$	1.364	$S1 =$	0.498	$Risk\ Category =$	II
$Fa =$	1.2	$Fv =$	1.802		
$Sds =$	1.091	$Sd1 =$	0.598		
$le =$	1	$R =$	8		
$Cs =$	0.136	$Design\ Category =$	D	<i>Table 11.6-1</i>	D
				<i>Table 11.6-2</i>	D

R=8
Buckling-restrained braced frames

N/S Vertical Distribution (ASCE 7-16 Section 12.8.3)			Vn/s (kips) =	Cv	Fx (kips)
Level	w (kips)	h (ft)	wh^k (k-ft)		
Penthouse/Main Roof	37.49	83.0000	3804.215	2.0%	10.56
	44.19	73.5833	3979.717	2.1%	11.05
	695.45	64.2500	58387.716	30.9%	162.09
	673.19	50.2500	43897.155	23.2%	121.86
	665.90	39.0000	33478.657	17.7%	92.94
	837.48	26.7500	28773.271	15.2%	79.88
Level 1	903.10	14.5000	16594.667	8.8%	46.07
		188915.398		100.0%	524.43

E/W Vertical Distribution (ASCE 7-16 Section 12.8.3)			Ve/w (kips) =	Cv	Fx (kips)
Level	w (kips)	h (ft)	wh^k (k-ft)		
Penthouse/Main Roof	37.49	83.0000	3804.215	2.0%	10.99
	44.19	73.5833	3979.717	2.1%	11.50
	695.45	64.2500	58387.716	30.9%	168.68
	673.19	50.2500	43897.155	23.2%	126.82
	665.90	39.0000	33478.657	17.7%	96.72
	837.48	26.7500	28773.271	15.2%	83.12
Level 1	903.10	14.5000	16594.667	8.8%	47.94
		188915.398		100.0%	545.77

N/S Seismic Daphragm Forces (ASCE 7-16 Section 12.10)			ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	Fpx (kips)
Level	wi (kips)	Σw (kips)						
Penthouse/Main Roof	37.49	37.49	10.56	0.21824	0.282	0.43648	0.282	10.56
	44.19	81.68	21.61	0.21824	0.265	0.43648	0.265	11.69
	695.45	777.13	183.69	0.21824	0.236	0.43648	0.236	164.39
	673.19	1450.32	305.55	0.21824	0.211	0.43648	0.218	146.92
	665.90	2116.22	398.49	0.21824	0.188	0.43648	0.218	145.33
	837.48	2953.70	478.37	0.21824	0.162	0.43648	0.218	182.77
Level 1	903.10	3856.80	524.43	0.21824	0.136	0.43648	0.218	197.09

E/W Seismic Daphragm Forces (ASCE 7-16 Section 12.10)			ΣF (ft)	0.2*Sds*le	$\Sigma F/\Sigma w$	0.4*Sds*le	Use...	Fpx (kips)
Level	wi (kips)	Σw (kips)						
Penthouse/Main Roof	37.49	37.49	10.99	0.21824	0.293	0.43648	0.293	10.99
	44.19	81.68	22.49	0.21824	0.275	0.43648	0.275	12.17
	735.11	816.79	191.17	0.21824	0.234	0.43648	0.234	172.05
	705.58	1522.37	317.98	0.21824	0.209	0.43648	0.218	153.99
	694.19	2216.56	414.70	0.21824	0.187	0.43648	0.218	151.50
	852.80	3069.36	497.83	0.21824	0.162	0.43648	0.218	186.12
Level 1	944.33	4013.69	545.77	0.21824	0.136	0.43648	0.218	206.09

APPLIED FORCES FOR NEW CONC. WALL ANALYSIS

NORTH WALL, LEVEL 4:

Roof $W_{EFF-E/W} = 1257.44^k$

Rigid Diaph. Multiplier @ North Wall: 0.395

TRIBUTARY FORCE TO NORTH WALL

FROM PENTHOUSE ABOVE: 46.74^k

SEISMIC RESPONSE COEFF. FOR $R=5$: 0.218

$$V = 0.218 \left[(0.395 \times 1257.44^k) + 46.74^k \right] = \underline{118.47^k}$$

NORTH WALL, LEVEL 1

Roof $W_{EFF-E/W} = 1257.44^k$

LEVEL 4 $W_{EFF-E/W} = 937.20^k$

LEVEL 3 $W_{EFF-E/W} = 710.83^k$

LEVEL 2 $W_{EFF-E/W} = 596.40^k$

Rigid Diaph. Multiplier = 0.395
(LEVELS 3, 4, Roof)

TRIBUTARY Multiplier (Level 2) = 0.500

TRIB. FORCE TO NORTH WALL = 46.74^k
FROM PENTHOUSE

TRIB. FORCE TO NORTH WALL = 896.42^k
From U-SHAPED WAYS
@ LEVEL 2

SEISMIC RESPONSE COEFF. = 0.218 ($R=5$)

$$V = 0.218 \left[0.395 (1257.44^k + 937.20^k + 710.83^k) + .5 (596.40^k) + 46.74 + 896.42^k \right] = \underline{520.81^k}$$

E-W WALL @ STAIR, LEVEL 2

$$\text{Roof Weff-e/w} = 1257.44^k$$

$$\text{Level 4} \quad " = 937.20^k$$

$$\text{Level 3} \quad " = 710.83^k$$

$$\text{RIGID DIAPHRAGM PILE = } 0.202$$

$$\text{TRIBUTARY FROM PENT. = } 32.48^k$$

$$\text{SW @ PENT. = } 79.22^k$$

$$\text{SUS. RESPONSE COEFF = } 0.218 \quad (R=5)$$

$$V = 0.218 \left[0.202(1257.44^k + 937.20^k + 710.83^k) + 32.48^k + 79.22^k \right] = 152.30^k$$

ACI 318-14 CONCRETE SHEAR PIERS STRENGTH DESIGN

08-Nov-23

Version Date: July 14, 2022

Author: Arek Higgs

Reviewed By: Josh Blazzard

JOB TITLE: Forest Service Building
WALL LOCATION: North Wall, Level 4

JOB #: 23124

DESIGNED BY:

TOTAL LAT. FORCE (ULTIMATE)=	118.4675	kips	S_{ds} =	1.091	f_y	60000	psi	Pre-cast:	No
SEISMIC DESIGN CATEGORY: (A-F) :	D		$R=$	5.0	$f_{c'}$	4500	psi	Wall Pier(s):	No
φ FOR SHEAR: (ACI 21.2.1, Table 21.2.1 (b))	0.75		$le=$	1.00	Wall Density δ (pcf):	150			
φ FOR BENDING: (ACI 21.2.1, Table 21.2.1 (h))	0.9		$\Omega=$	2.5	λ :	1.0			
OVERALL WALL LENGTH (ft):	19.17		HEIGHT/LENGTH OF OVERALL WALL:			0.73			
OVERALL WALL HEIGHT (ft):	14.00		ac: (FOR OVERALL WALL):			3.00			
φ* V_n MAX (kips) FOR COMBINED PIERS: (ACI 18.10.4.4)	926	OK	Wall Seismic Self Weight Included In Shear Force?			NO			

SUMMARY

SHEAR CAPACITY

2*A _{cv} *SQRT(f _c) (kips):	309	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. REQ'D?: (ACI 11.7.2.3 and 18.10.2.2)	NO	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. USED? If row 66 is YES, Enter YES	YES								
α_c : (ACI 18.10.4.1)	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ϕV_n MAX (kips): (ACI EQ. 18.10.4.1)	882	0	0	0	0	0	0	0	0
MAXIMUM SHEAR CHECK:	OK	0	0	0	0	0	0	0	0
Nominal Shear Strength Vn (kips):	817	0	0	0	0	0	0	0	0

FLEXURAL REINFORCING

SPECIAL BOUNDARY ELEMENTS (ACI 18.10.6)

(ACI 18.10.6.2 is not considered in this analysis)

(ACI 18.10.6.3)

GROSS MOMENT OF INERTIA OF PIER Ig (in ⁴):	#####	0	0	0	0	0	0	0	0
SECTION MODULUS OF PIER (in ³):	88,167	0	0	0	0	0	0	0	0
BENDING STRESS, f _b (psi):	0	0	0	0	0	0	0	0	0
AXIAL STRESS, f _a (psi):	253	0	0	0	0	0	0	0	0
EXTREME FIBER COMP. STRESS (psi):	253	0	0	0	0	0	0	0	0
0.2f _c	900	0	0	0	0	0	0	0	0
SPECIAL BOUNDARY ELEMENTS REQ'D?:	NO	0	0	0	0	0	0	0	0

(ACI 18.10.6.4)

a (in):	6.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
c (in):	8.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(a) Min Length of Boundary Element (in.):	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(b) Min width of compression zone (in.):	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(c) Minimum Width of Compression Zone (in.):	N/A	0	0	0	0	0	0	0	0
Min Compression Zone Check:									
(e) Transverse Reinforcement per 18.7.5.2(a)-(e) & 18.7.5.3 Req'd:	OK	0	0	0	0	0	0	0	0
(f) Required Amount of Transverse Reinforcement A_{sh2} :	YES	0	0	0	0	0	0	0	0
Tie Bar Size:	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum Tie Bar Spacing (in):	#3 Bar								
Vertical Tie Bar Spacing Used (in):	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A_{sh2} Provided (in ²):	4.0								
A_{sh2} Sufficient:	0.22	0	0	0	0	0	0	0	0
(g) Required Footing Thickness:	OK	0	0	0	0	0	0	0	0
(h) Development of Horizontal Wall Reinf. Req'd @ Boundary:	N/A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Horizontal Wall Reinf. Ends into Boundary:	NO	0	0	0	0	0	0	0	0
Min Length of Boundary Element for Development:	Straight								
	N/A	0	0	0	0	0	0	0	0

WHEN SPECIAL BOUNDARY ELEMENTS ARE NOT REQ'D

(ACI 18.10.6.5)

ACI 318-14 CONCRETE SHEAR PIERS STRENGTH DESIGN

08-Nov-23

Version Date: July 14, 2022

Author: Arek Higg

Reviewed By: Josh Blazzard

JOB TITLE: Forest Service Building
WALL LOCATION: North Wall, Level 1

JOB #: 23124

DESIGNED BY:

TOTAL LAT. FORCE (ULTIMATE)=	520.8065	kips	S_{ds} =	1.091	f_y	60000	psi	Pre-cast:	No
SEISMIC DESIGN CATEGORY: (A-F):	D		$R=$	5.0	$f_{c'}$	4500	psi	Wall Pier(s):	No
φ FOR SHEAR: (ACI 21.2.1, Table 21.2.1 (b))	0.75		$le=$	1.00	Wall Density δ (pcf):	150			
φ FOR BENDING: (ACI 21.2.1, Table 21.2.1 (h))	0.9		$\Omega=$	2.5	λ :	1.0			
OVERALL WALL LENGTH (ft):	19.17		HEIGHT/LENGTH OF OVERALL WALL:	0.64					
OVERALL WALL HEIGHT (ft):	12.25		ac: (FOR OVERALL WALL):	3.00					
φ* V_n MAX (kips) FOR COMBINED PIERS: (ACI 18.10.4.4)	926	OK	Wall Seismic Self Weight Included In Shear Force?	NO					

SUMMARY

REINFORCING									
φ FOR SHEAR: (ACI 21.2.1, Table 21.2.1 (b))		0.75							
VERTICAL PLAN GROSS AREA OF CONCRETE, A_{cv} (in ²):		2300 0 0 0 0 0 0 0 0							
HORIZONTAL PLAN GROSS AREA OF CONCRETE (in ²):		1470 0 0 0 0 0 0 0 0							
MIN. HORIZ. REINF. RATIO: (ACI 18.10.2.1, 11.6.1 and 11.6.2) (ρ)		0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
MIN. VERT. REINF. RATIO: (ACI 18.10.2.1, 11.6.1 and 11.6.2) (ρ)		0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
φ V_n MAX (kips): (ACI 11.5.4.3 and 18.10.4.4)		1157	0	0	0	0	0	0	0
φ V_c MAX (kips): (ACI 11.5.4.5)		185	0	0	0	0	0	0	0
NEEDED HORIZ. REINF. (in ² /ft): (ACI 11.5.4.8 and 22.5.10.1)		0.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HORIZONTAL BAR SIZE:									
VERTICAL BAR SIZE:		#5 Bar							
REINFORCING SPACING									
I _w /3 (in):		77	0	0	0	0	0	0	0
I _w /5 (in):		46	0	0	0	0	0	0	0
3h (in):		30	0	0	0	0	0	0	0
MAX. SPACING OF HORIZ. REINF. (in): (ACI 11.7.3.1)		18	0	0	0	0	0	0	0
MAX. SPACING OF VERT. REINF. (in): (ACI 11.7.2.1)		18	0	0	0	0	0	0	0
Actual Spacing of Horiz. Reinf. (in)		8							
Actual Spacing of Vert. Reinf. (in)		12							
Actual Horizontal Area of Steel Provided (in ² /ft):		0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Actual Vertical Area of Steel Provided (in ² /ft):		0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Horizontal Steel Required (in ² /ft):		0.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vertical Steel Required (in ² /ft):		0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Horiz. Steel Acceptance Check:		OK	0	0	0	0	0	0	0
Vert. Steel Acceptance Check:		OK	0	0	0	0	0	0	0

SHEAR CAPACITY

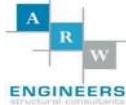
2*A _{cv} *SQRT(f _c) (kips):	309	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. REQ'D?: (ACI 11.7.2.3 and 18.10.2.2)	NO	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. USED? If row 66 is YES, Enter YES	YES								
a _c : (ACI 18.10.4.1)	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
#V _n MAX (kips): (ACI EQ. 18.10.4.1)	1149	0	0	0	0	0	0	0	0
MAXIMUM SHEAR CHECK:	OK	0	0	0	0	0	0	0	0
Nominal Shear Strength V _n (kips):	1102	0	0	0	0	0	0	0	0

FLEXURAL REINFORCING

SPECIAL BOUNDARY ELEMENTS (ACI 18.10.6)

(ACI 18.10.6.2 is not considered in this analysis)

(ACI 18.10.6.3)


GROSS MOMENT OF INERTIA OF PIER Ig (in ⁴):	#####	0	0	0	0	0	0	0	0
SECTION MODULUS OF PIER (in ³):	88,167	0	0	0	0	0	0	0	0
BENDING STRESS, f _b (psi):	131	0	0	0	0	0	0	0	0
AXIAL STRESS, f _a (psi):	453	0	0	0	0	0	0	0	0
EXTREME FIBER COMP. STRESS (psi):	584	0	0	0	0	0	0	0	0
0.2f _c	900	0	0	0	0	0	0	0	0
SPECIAL BOUNDARY ELEMENTS REQ'D?:	NO	0	0	0	0	0	0	0	0

(ACI 18.10.6.4)

WHEN SPECIAL BOUNDARY ELEMENTS ARE NOT REQ'D

(12) 12.12.2.5)

ACI 318-14 CONCRETE SHEAR PIERS STRENGTH DESIGN

Version Date: July 14, 2022

Author: Arek Higg

Reviewed By: Josh Blazzard

08-Nov-23

JC

LE: Forest Service Building

JOB #: 23124

DESIGNED BY

TOTAL LAT. FORCE (ULTIMATE)=	152.2959	kips	S_{ds} =	1.091	F_y =	60000	psi	Pre-cast:	No
SEISMIC DESIGN CATEGORY. (A-F) :	D		$R=$	5.0	f'_c =	4500	psi	Wall Pier(s):	No
φ FOR SHEAR: (ACI 21.2.1, Table 21.2.1 (b))	0.75		$le=$	1.00	Wall Density δ (pcf):	150			
φ FOR BENDING: (ACI 21.2.1, Table 21.2.1 (h))	0.9		$\Omega=$	2.5	λ :	1.0			
OVERALL WALL LENGTH (ft):	15.08		HEIGHT/LENGTH OF OVERALL WALL:				0.81		
OVERALL WALL HEIGHT (ft):	12.25		ac: (FOR OVERALL WALL):				3.00		
φ* V_n MAX (kips) FOR COMBINED PIERS: (ACI 18.10.4.4)	729	OK	Wall Seismic Self Weight Included In Shear Force?				NO		

SUMMARY

SHEAR CAPACITY

2*A _{cv} *SQRT(f' _c) (kips):	243	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. REQ'D?: (ACI 11.7.2.3 and 18.10.2.2)	NO	0	0	0	0	0	0	0	0
2 LAYERS OF REINF. USED? If row 66 is YES, Enter YES	YES								
a _c : (ACI 18.10.4.1)	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
#V _n MAX (kips): (ACI EQ. 18.10.4.1)	694	0	0	0	0	0	0	0	0
MAXIMUM SHEAR CHECK:	OK	0	0	0	0	0	0	0	0
Nominal Shear Strength V _n (kips):	643	0	0	0	0	0	0	0	0

FLEXURAL REINFORCING

SPECIAL BOUNDARY ELEMENTS (ACI 18.10.6)

(ACI 18.10.6.2 is not considered in this analysis)

(ACI 18.10.6.3)

GROSS MOMENT OF INERTIA OF PIER Ig (in⁴): 4,941,418 0 0 0 0 0 0 0 0 0
 SECTION MODULUS OF PIER (in³): 54,601 0 0 0 0 0 0 0 0 0
 BENDING STRESS, f_b (psi): 0 0 0 0 0 0 0 0 0 0
 AXIAL STRESS, f_a (psi): 359 0 0 0 0 0 0 0 0 0
 EXTREME FIBER COMP. STRESS (psi): 359 0 0 0 0 0 0 0 0 0
 0.2f_c: 900 0 0 0 0 0 0 0 0 0
 SPECIAL BOUNDARY ELEMENTS REQ'D?: NO 0 0 0 0 0 0 0 0 0

(ACI 18.10.6.4)

a (in):	8.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
c (in):	10.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(a) Min Length of Boundary Element (in.):	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(b) Min width of compression zone (in.):	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(c) Minimum Width of Compression Zone (in.):	N/A	0	0	0	0	0	0	0	0
Min Compression Zone Check:	OK	0	0	0	0	0	0	0	0
(e) Transverse Reinforcement per 18.7.5.2(a)-(e) & 18.7.5.3 Req'd:	YES	0	0	0	0	0	0	0	0
(f) Required Amount of Transverse Reinforcement A_{sh2} :	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tie Bar Size:	#4 Bar								
Maximum Tie Bar Spacing (in):	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vertical Tie Bar Spacing Used (in):	3.0								
A_{sh2} Provided (in ²):	0.4	0	0	0	0	0	0	0	0
A_{sh2} Sufficient:	OK	0	0	0	0	0	0	0	0
(g) Required Footing Thickness:	N/A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(h) Development of Horizontal Wall Reinf. Req'd @ Boundary:	NO	0	0	0	0	0	0	0	0
Horizontal Wall Reinf. Ends into Boundary:	Hooked								
Min Length of Boundary Element for Development:	N/A	0	0	0	0	0	0	0	0

WHEN SPECIAL BOUNDARY ELEMENTS ARE NOT REQ'D

(ACI 18.10.6.E)

APPENDIX D

TIER 1 REPORT & CHECKLISTS

April 17, 2023

Sara Mees
Ogden City
2549 S Washington Blvd
Ogden, UT 84401

Re: 507 25th Street Limited Structural Evaluation
23124

Dear Sara:

At your request we have completed a limited structural evaluation and observation of the Forest Service Building located at 507 25th Street in Ogden, UT. The purpose of the evaluation was to determine in a very cursory way the structural gravity and lateral system of the building and determine if the exterior walls are attached to the floor and roof diaphragms. Neither advanced analysis techniques nor observation of existing structural elements by removing finished materials were performed as part of this limited visual evaluation. This evaluation only refers to structural elements, conditions and concerns. Architectural, Mechanical, Electrical or other important building factors are beyond the scope of this evaluation and report. The observation visit to the existing building was completed on April 10, 2023 in your presence.

Evaluation Process

The limited structural evaluation was accomplished by the following: 1) A site observation of the existing conditions visually reviewing any visible structural conditions such as materials, structural element types, general sizes and limited observation of framing connections. The site observation did not include the removal of any finished material or surfaces to view obscured structural elements. 2) Using engineering experience from multiple previous building evaluations reasoned assumptions regarding the existing building structural condition were made in order to provide "next step" recommendations to the client. As noted above, the evaluation process was intended to be cursory and preliminary. Detailed investigations, modeling and analysis were not completed. Additional in-depth evaluation alternatives are available if deemed necessary by the client.

Building Description

The Forest Service Building is located at 507 25th Street in Ogden, UT. The building has a square footprint in the basement and 1st floor with a U-shaped footprint at the 2nd, 3rd and 4th floors. A three-story penthouse tower is centrally located on the flat roof. Parapet walls surround the flat roof with a

tall brick chimney located at the southeast corner of the building. The following summarizes the structure:

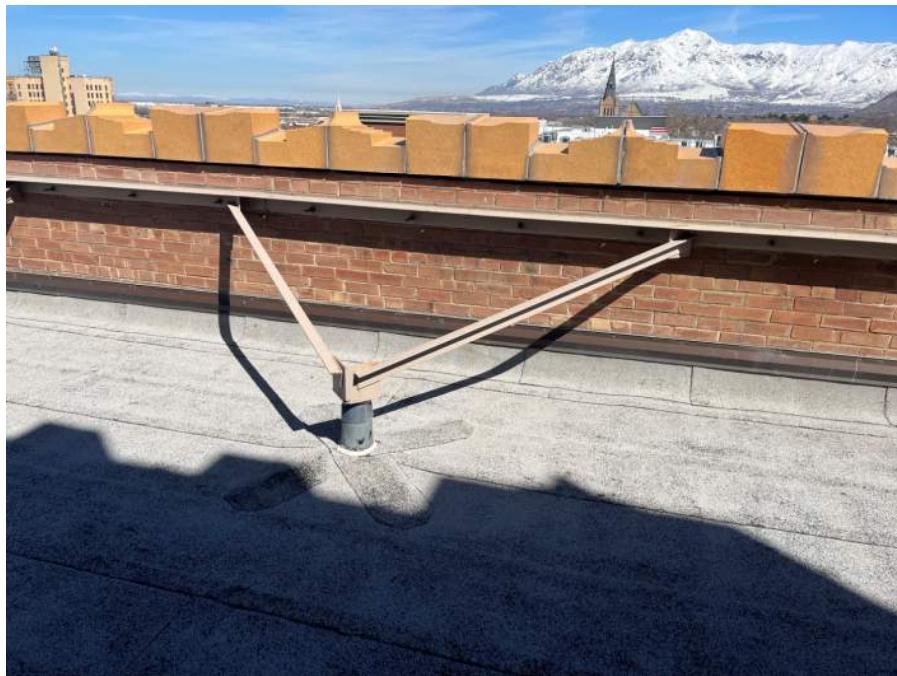
- Constructed in 1934
- Approximately 51,000 sq ft
- Reinforced concrete-frame structure with unreinforced masonry infill walls
- Brick veneer and terra-cotta exterior finishes
- Building listed in the National Register of Historic Places

Photo 1 – Front Elevation

Evaluation Results

Utah code 15A-3-801 states that during a re-roof project, unreinforced masonry parapets need to be braced and anchored back to the roof diaphragm. This seismic upgrade appears to have been completed (see Photo 2).

Chapter 12 of the International Existing Building Code (IEBC) addresses the repair, alteration, relocation and change of occupancy of Historic Buildings.


- A historic building undergoing alterations or change of occupancy shall be investigated and evaluated. For buildings assigned to Seismic Design Category D, E or F, a structural evaluation describing, at a minimum, the vertical and horizontal elements of the lateral force-resisting system and any strengths or weaknesses therein shall be prepared. Additionally, the report shall describe each feature that is not in compliance with these provisions and shall demonstrate how the intent of these provisions is complied with in providing an equivalent level of safety. (IEBC 1201.2)
- Repairs to any portion of the historic building or structure shall be permitted with original or like materials and original methods of construction. (IEBC 1202.1)
- Historic buildings undergoing a change of occupancy which results in a building being assigned to a higher risk category shall satisfy the requirements of Section 1613 of the International Building Code for the new risk category using full seismic forces. (IEBC 1006.3)

The following observations were made of the vertical and horizontal elements of the lateral force-resisting system.

- The vertical lateral force-resisting system consists of reinforced concrete-frame infilled with unreinforced masonry walls.
- The horizontal lateral force-resisting system consists of reinforced concrete diaphragms at the floors and roof.
- Reinforcement of the concrete-frames could not be observed. However, it is typical that these types of concrete frames built in the 1930 do not have adequate vertical and horizontal ties to meet ductility requirements of current codes.

The following observations were made of potential weaknesses of the structural elements.

- The unreinforced masonry infill walls are not positively attached to the concrete-frames (see Photo 3).
- The unreinforced masonry chimney exceeds the maximum height-to-width ratio and is not positively attached to the roof and floor diaphragms (see Photo 4).
- The unreinforced masonry partition walls are not braced at the top.

Photo 2 – Unreinforced masonry parapets braced back to roof diaphragm

Photo 3 – Unreinforced masonry infill walls at concrete-frame

Photo 4 – Unreinforced masonry chimney

Conclusions

Based on the limited evaluation and observation completed for the Forest Service Building, it is our professional opinion that the structure lacks the necessary strength and construction detailing to resist significant seismic (earthquake) forces.

The tall chimney at the southeast corner of the building is at risk of collapse during a moderate to significant seismic (earthquake) event.

The unreinforced masonry infill walls could become a falling hazard during a moderate to significant seismic (earthquake) event.

If mandatory seismic upgrades are not triggered due to a change in occupancy per IEBC 1006.3, the building owner may voluntarily upgrade elements of the structure to achieve a higher performance level during a seismic event. For this building some of these upgrades could include:

- Attach infill masonry walls to concrete-frames
- Strengthen the vertical lateral system by adding shear walls or braced frames placed strategically around the U-shaped structure
- Brace, anchor and/or reinforce the unreinforced masonry chimney
- Remove or brace tops of unreinforced masonry partition walls

If you have any questions concerning the contents of this report, please contact us at your earliest convenience. ARW Engineers would be happy to provide any additional assistance desired.

Sincerely,

Troy M. Dye, SE
Principal

23124_evalrpt_20230417

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 1 of 2
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-2 COLLAPSE PREVENTION BASIC CONFIGURATION CHECKLIST

C	N	C	N/A	U	Comments
---	---	---	-----	---	----------

VERY LOW SEISMICITY: BUILDING SYSTEM-GENERAL

- LOAD PATH: The structure contains a complete, well defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.
(Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
- ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.5% of the height of the shorter building in low seismicity, 1.0% in moderate seismicity, and 3/0% in high seismicity.
(Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)
- MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure.
(Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)

VERY LOW SEISMICITY: BUILDING CONFIGURATION

<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	Shear walls lengths and thicknesses are equal from 1 st floor to roof and therefore the shear strengths are similar at each story.
<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Shear walls lengths and thickness are equal from 1 st floor to roof and therefore the stiffnesses are similar at each story.
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	East and west walls of courtyard bear on beams and diaphragm at 2 nd floor. No walls below.
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	"U" shaped floor plans at 3 rd , 4 th and roof levels. Offset at 2 nd level (58ft) / (103ft) = 56% > 30%
<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	2 nd floor mass = 838 kips 3 rd floor mass = 666 kips (838 – 666) / 666 = 0.25 < 0.5
<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	3 rd , 4 th , roof CM = 52ft (X) & 46ft (Y) CR = 51ft (X) & 40ft (Y) X = 1ft < 0.2(104ft) = 21ft Y = 6ft < 0.2(103ft) = 21ft

Job Name: 507 25th Street Seismic Study

Date: November 1, 2023

Building Address: 507 25th Street

Page: 2 of 2

Job Number: 23124 Prepared By: TMD

ASCE 41-17-2 COLLAPSE PREVENTION BASIC CONFIGURATION CHECKLIST

C NC N/A U	Comments
------------	----------

LOW SEISMICITY: (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR VERY LOW SEISMICITY)

GEOLOGIC SITE HAZARDS

<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Commentary: Sec. A.6.1.1. Tier 2: Sec. 5.4.3.1)	High liquefaction potential
--------------------------	-------------------------------------	--------------------------	--------------------------	--------------------------	---	------------------------------------

<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movement without failure. (Commentary: Sec. A.6.1.2. Tier 2: Sec. 5.4.3.1)	
-------------------------------------	--------------------------	--------------------------	--------------------------	---	--

<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: Sec. 5.4.3.1)	
-------------------------------------	--------------------------	--------------------------	--------------------------	---	--

MODERATE AND HIGH SEISMICITY: (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

FOUNDATION CONFIGURATION

<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$(103\text{ft})/(58\text{ft}) = 1.78 > 0.6(1.637) = 0.98$
-------------------------------------	--------------------------	--------------------------	--------------------------	---	---

<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	
--------------------------	--------------------------	--------------------------	-------------------------------------	--	--

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 1 of 3
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-26 COLLAPSE PREVENTION STRUCTURAL CHECKLIST FOR BUILDING TYPES C3 AND C3A

C	NC	N/A	Low and Moderate Seismicity	Comments
---	----	-----	-----------------------------	----------

SEISMIC-FORCE-RESISTING SYSTEM

- REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.
(Commentary: Sec. A.3.2.1.1. Tier 2 Sec. 5.5.1.1)
- SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than of 70 lb/in.² (0.48 MPa).
(Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)
- SHEAR STRESS CHECK: The shear stress in the unreinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 30 lb/in.² (0.21 MPa) for clay units and 70 lb/in.² (0.48 Pa) for concrete units. Bays with openings greater than 25% of the wall area shall not be included in A_w of Eq. (4-8).
(Commentary: Sec. A.3.2.5.1. Tier 2: Sec. 5.5.3.1.1)
- INFILL WALL CONNECTIONS: Masonry is in full contact with frame.
(Commentary: A.3.2.6.1. Tier 2: Sec. 5.5.3.5.1. and 5.5.3.5.3)

CONNECTIONS

- TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of loads to the shear walls.
(Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)
- CONCRETE COLUMNS: All concrete columns are doweled into the foundation with a minimum of 4 bars.
(Commentary: Sec. A.5.3.2. Tier 2: Sec. 5.7.3.1)

Condition unknown

HIGH SEISMICITY: COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY.

SEISMIC-FORCE-RESISTING SYSTEM

- DEFLECTION COMPATIBILITY: Secondary components have the shear capacity to develop the flexural strength of the components.
(Commentary: Sec. A.3.1.6.2. Tier 2: Sec. 5.5.2.5.2)
- FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints.
(Commentary: Sec. A.3.1.6.3. Tier 2: Sec. 5.5.2.5.3)
- PROPORTIONS: The height-to-thickness ratio of the unreinforced infill walls at each story is less than 9.
(Commentary: Sec. A.3.2.6.2. Tier 2: Sec. 5.5.3.1.2)
- CAVITY WALLS: The infill walls are not of cavity construction.
(Commentary: Sec. A.3.2.6.3. Tier 2: Sec. 5.5.3.5.2)

Reinforcement in concrete members unknown and therefore check cannot be performed.

Reinforcement in concrete members unknown and therefore check cannot be performed.

$(12\text{ft})(12\text{in}) / (12\text{in thick}) = 12 > 9$

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 2 of 3
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-26 COLLAPSE PREVENTION STRUCTURAL CHECKLIST FOR BUILDING TYPES C3 AND C3A

C	NC	N/A	Low and Moderate Seismicity	Comments
SEISMIC-FORCE-RESISTING SYSTEM				
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	INFILL WALLS: The infill walls are continuous to the soffits of the frame beams and to the columns to either side. (Commentary: Sec. A.3.2.6.4. Tier 2: Sec. 5.5.3.5.3)	
DIAPHRAGMS (FLEXIBLE OR STIFF)				
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)	
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	Interior stair and elevator openings more than 25% of wall length at inside portion of "U" shaped building.
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec. 5.6.1.3)	Stair openings adjacent to exterior shear walls are wider than 8ft.
FLEXIBLE DIAPHRAGMS				
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	SPANS: All wood diaphragms with spans greater than 12 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2 Sec. 5.6.2)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	
CONNECTIONS				
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	UPLIFT AT PILE CAPS: Pile caps shall have top reinforcement, and piles are anchored to the pile caps. (Commentary: Sec. A.5.3.8. Tier 2: Sec. 5.7.3.5)	

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
Building Address: 507 25th Street Page: 3 of 3
Job Number: 23124 Prepared By: TMD

ASCE 41-17-26 COLLAPSE PREVENTION STRUCTURAL CHECKLIST FOR BUILDING TYPES C3 AND C3A

C	NC	N/A	Low and Moderate Seismicity	Comments
----------	-----------	------------	------------------------------------	-----------------

SEISMIC-FORCE-RESISTING SYSTEM

STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 1 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C	NC	N/A	U	Comments
LIFE SAFETY SYSTEMS				
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. STAIRS AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. SPRINKLER CEILING CLEARANCE: Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)
HAZARDOUS MATERIALS				
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-LMH; LS-LMH; PR-LMH. HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-LMH; LS-LMH; PR-LMH. HAZARDOUS MATERIAL STORAGE: Breakage containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-MH; LS-LMH; PR-LMH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3. and 13.7.5)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-MH; LS-LMH; PR-LMH. SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves or other devices to limit spills or leaks. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3. and 13.7.5)

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 2 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C	NC	N/A	U	Comments
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-LMH; LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4. Tier 2: Sec. 13.7.3. and 13.7.5)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-MH; LS-LMH; PR-LMH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec. 13.7.3, 13.7.5, and 13.7.6)
PARTITIONS				
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	HR-LMH; LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	HR-LMH; LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-MH; PR-MH. DRIGT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary: Sec. A.7.1.2. Tier 2: Sec. 13.6.2)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2: Sec. 13.6.2)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Commentary: Sec. A.7.1.4. Tier 2: Sec. 13.6.2)
CEILINGS				
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-H; LS-LMH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft ² (1.1 m ²) of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 3 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C	N	C	N/A	U	Comments
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-LMH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft ² (1.1 m ²) of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft ² , (13.4 m ²) and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4)	
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-MH. EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² (13.4 m ²) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, $\frac{1}{2}$ in.(13 mm); in High Seismicity, $\frac{3}{8}$ in.(19mm). (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-not required; PR-MH. CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² (13.4 m ²) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	
<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-not required; PR-H. SEISMIC JOINTS: Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft ² (232.3 m ²) and has a ratio of long-to-short dimension no more than 4-1. (Commentary: Sec. A.7.2.7. Tier 2: 13.6.4)	

LIGHT FIXTURES

<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture: (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4. and 13.7.9)
--------------------------	--------------------------	--------------------------	-------------------------------------	--

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 4 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-not required; PR-H. PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: A.7.3.3. Tier 2: Sec. 13.7.9)	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-not required; LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	
CLADDING AND GLAZING	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-MH; LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than 10 lb/ft ² (0.48 kN/m ²) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft; (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft. (1.2 m). (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-MH; PR-MH. CLADDING ISOLATION: For steel or concrete moment frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Section 13.6.1)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-MH; LS-MH; PR-MH. MULTI-STORY PANELS: For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-MH; PR-MH. THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)	

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 5 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-MH; LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-MH; LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: sec. 13.6.1.4)	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-MH; LS-MH; PR-MH. INSERTS: Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-MH; PR-MH. OVERHEAD GLAZING: Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft ² (1.5 m ²) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8. Tier 2: Sec. 13.6.1.5)	

MASONRY VENEER

<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-not required; LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft ² (0.25 m ²) and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	Ties typically not used during this era of construction
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-not required; LS-LMH; PR-LMH. SHELF ANGLES: Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Commentary: Sec. A.7.5.2. Tier 2: Sec. 13.6.1.2)	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-not required; LS-LMH; PR-LMH. WEAKENED PLANES: Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Commentary: Sec. A.7.5.3. Tier 2: Sec. 13.6.1.2)	
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-LMH; LS-LMH; PR-LMH. UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Sec. 13.6.1.1. and 13.6.1.2)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-MH; PR-MH. STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Commentary: Sec. A.7.6.1. Tier 2: Sec 13.6.1.1. and 13.6.1.2)	

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 6 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-not required; LSLMH; PR-MH. ANCHORAGE: For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Commentary: Sec. A.7.7.1. Tier 2: Sec. 13.6.1.1. and 13.6.1.2)	Ties typically not used during this era of construction
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-not required PR-MH. WEEP HOLES: In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Commentary: Sec. A.7.5.6. Tier 2: Sec. 13.6.1.2)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-not required; PR-MH. OPENINGS: For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Commentary: Sec. A.7.6.2. Tier 2: Sec. 13.6.1.1. and 13.6.1.2)	
PARAPETS, CORNICES, ORNAMENTATION, AND APPENDAGES	
<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-LMH; LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2: Sec. 13.6.5)	Parapets are braced back to roof diaphragm using steel angles
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 f (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft. (1.8 m). (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-H; LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-MH; LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft. 1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	Parapets are braced back to roof diaphragm using steel angles
MASONRY CHIMNEYS	
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-LMH; LS-LMH; PR-LMH. URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	$(26\text{ft}) / (5.5\text{ft}) = 4.7 \text{ ft} > 2$

Job Name: 507 25th Street Seismic Study

Date: November 1, 2023

Building Address: 507 25th Street

Page: 7 of 10

Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-LMH; LS-LMH; PR-LMH. ANCHORAGE: Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Commentary: Sec. A.7.9.2. Tier 2: 13.6.7)	No anchorage to roof diaphragm
STAIRS	
<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> HR-not required; LS-LMH; PR-LMH. STAIR ENCLOSURES: Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out-of-plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in and seismicity, 12-to-1. (Commentary: Sec. A.7.10.1. Tier 2: Sec. 13.6.2 and 13.6.8)	URM walls around stair enclosures
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> HR-not required; LS-LMH; PR-LMH. STAIR DETAILS: The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Commentary: Sec. A.7.10.2. Tier 2: 13.6.8)	
CONTENTS AND FURNISHINGS	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-LMH; LS-MH; PR-MH. INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements on ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-H; PR-H. FALL-PRONE CONTENTS: Equipment, stored items, or other contents weighing more than 20 lb. (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Commentary: Sec. A.7.11.3 Tier 2: Sec. 13.8.2)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-not required; PR-MH. ACCESS FLOORS: Access floors more than 9 in. (229 m) high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.6.10)	
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> HR-not required; LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary: Sec. A.7.11.5. Tier 2: Sec. 13.7.7. and 13.6.10)	

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 8 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary: Sec. A.7.11.6. Tier 2: Sec. 13.8.2)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb. (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: Sec. A.7.12.4. Tier 2: 13.7.1. and 13.7.7)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb. (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1. and 13.7.7)
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	HR-not required; LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. SUSPENDED EQUIPMENT: Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2: Sec. 13.7.1. and 13.7.7.)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. VIBRATION ISOLATORS: Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform-supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec. A.7.12.10. Tier 2: 13.7.1. and 13.7.7)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. ELECTRICAL EQUIPMENT: Electrical equipment is laterally braced to the structure: (Commentary: Sec. A.7.12.11. Tier 2: 13.7.7)

Job Name: 507 25th Street Seismic Study

Date: November 1, 2023

Building Address: 507 25th Street

Page: 9 of 10

Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C NC N/A U	Comments
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. CONDUIT COUPLINGS: Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Commentary: Sec. A.7.12.12. Tier 2: 13.7.8)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3. and 13.7.5)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3. and 13.7.5)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3. and 13.7.5)
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	HR-not required; LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec. 13.7.3 and 13.7.5)
<input type="checkbox"/> DUCTS <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than 6 ft ² (0.56 m ²) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft. (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)
<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)
<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	HR-not required; LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.4. Tier 2: Sec. 13.7.6)

Job Name: 507 25th Street Seismic Study Date: November 1, 2023
 Building Address: 507 25th Street Page: 10 of 10
 Job Number: 23124 Prepared By: TMD

ASCE 41-17-38 NONSTRUCTURAL CHECKLIST

C	NC	N/A	U	Comments
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	ELEVATORS
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-H; PR-H. RETAINER GUARDS: Sheaves and drums have cable retainer guards. (Commentary: Sec. A.7.16.1. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-H; PR-H. RETAINER PLATE: A retainer plate is present at the top and bottom of both car and counterweight. (Commentary: Sec. A.7.16.2. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. ELEVATOR EQUIPMENT: Equipment, piping, and other components that are part of the elevator system are anchored. (Commentary: Sec. A.7.16.3. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of 150 ft/min (0.30 m/min) or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.7.11)
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	HR-not required; LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. SPREADER BRACKET: Spreader brackets are not used to resist seismic forces. (Commentary: Sec. A.7.16.8. Tier 2: 13.7.11)
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	HR-not required; LS-not required; PR-H. GO-SLOW ELEVATORS: The building has a go-slow elevator system. (Commentary: Sec. A.7.16.9. Tier 2: 13.7.11)

SHEAR STRESS IN SHEAR WALLS

$$V_i^{\text{AVG}} = \frac{1}{M_s} \left(\frac{V_i}{A_w} \right)$$

[4.8 ASCE 41-17]

$$M_{S_{LS}} = 1.25$$

$$M_{S_{CP}} = 1.75$$

$$\therefore V_i = \frac{1}{1.25} \left(\frac{7367^k}{6192 \text{ in}^2} \right) = 951 \text{ psi}$$

N-SAw

EXCEEDS 30 psi

EAST

$$5'(12)(12") (3) = 2160 \text{ in}^2$$

$$\therefore V_i = \frac{1}{1.75} \left(\frac{7367^k}{6192 \text{ in}^2} \right) = 679 \text{ psi}$$

E.S.W.
OF
COURT

$$4'(12)(12") (2) = 1152 \text{ in}^2$$

EXCEEDS 30 psi

WEST

$$5'(12)(12") (4) = \underline{\underline{2300 \text{ in}^2}}$$

$$6192 \text{ in}^2$$

E-W

$$\text{SOUTH } (9' + 7' + 9.5')(12)(12") = 3672 \text{ in}^2$$

$$\text{NORTH } 5'(12)(12") (4) = \underline{\underline{2880 \text{ in}^2}}$$

$$6552 \text{ in}^2$$

$$V = CS_a W$$

C = 1.0 C3 > 4 STORIES

$$S_a = \frac{S_{xi}}{T}$$

BSE-2N

$$V = (1)(1.637)(4500^k)$$

$$S_{xi} = 0.897$$

$$V = 7367^k$$

$$T = C_t h_n^B$$

$$C_t = 0.02$$

$$h_n = 50 \text{ FT}$$

$$\beta = 0.75$$

$$T = 0.376$$

$$S_a = 2.39 \leq S_{xs} = 1.637$$

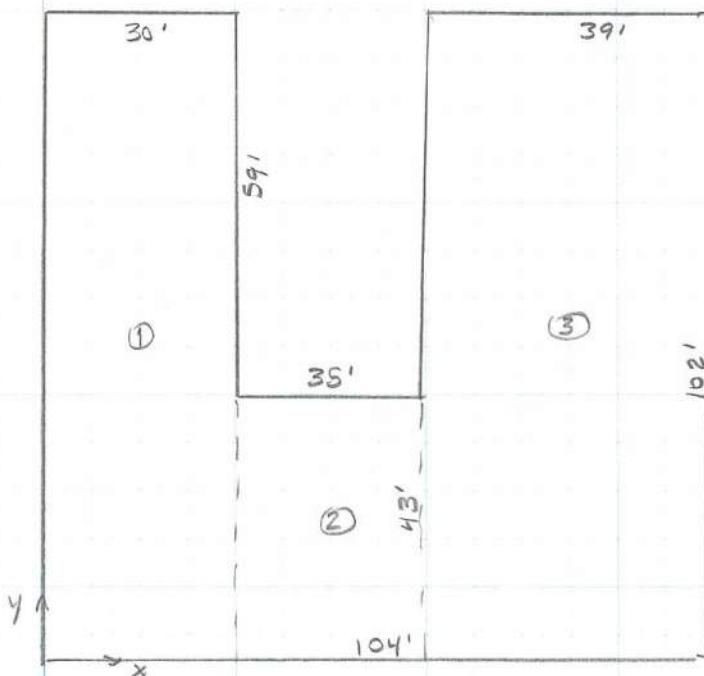
$$W = 4500^k$$

A

R

W

STRUCTURAL CONSULTANTS


Project No. 23124

Sheet No.

Project 507 25th Street

Prepared By TMD

Date 11/02/23

$$A_1 = 30(102) = 3060$$

$$y_1 = \frac{102}{2} = 51$$

$$A_2 = 35(43) = 1505$$

$$y_2 = \frac{43}{2} = 22$$

$$A_3 = (39 \times 102) = 3978$$

$$y_3 = \frac{102}{2} = 51$$

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3}{A_1 + A_2 + A_3}$$

$$\bar{y} = 45.9 \text{ ft}$$